Category Archives: Product Catalog

China Standard CHINAMFG Good Quality and Price Rg4-30-2mcrf Durable Wire Guide Roller

Product Description

Qipang Good quality and price RG4-30-2MCRF Durable Wire Xihu (West Lake) Dis. Roller
 

The Wire Xihu (West Lake) Dis. Roller RG4-30-2MCRF is a high-precision Rolling Ring Drive unit for 30mm diameter shafts similar to the Uhing. This traverse features 4 Rolling Rings, which provide precision linear and rotational motion for various applications. The team is compatible with Uhing Traverse Units. It offers a maximum side thrust of 52 Kg, This unit weighs 3.2 Kg.

Product Description

  1. 3 Rolling Rings provide precision linear and rotational motion.
  2. Compatible with Uhing Traverse Units.
  3. Offers a maximum side thrust of 52 Kg.
  4. Maximum linear speed of 24 CHINAMFG per minute and maximum shaft speed of 1000 RPM.
  5. High-precision and lightweight design.

Parameter Value
Number of Rolling Rings 4
Maximum Side Thrust 52 Kg
Maximum Shaft Speed 1000 RPM
Maximum Linear Speed 24 CHINAMFG / Minute
Weight 3.2Kg

Detailed Photos

 

After Sales Service

 

One year warranty

Qipang Good Quality and Price Rg4-30-2mcrf Durable Wire Xihu (West Lake) Dis. Roller
  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Online
Function: Abrasion Resistance, High Temperature Resistance, Anti-Corrosion, Anti-Cold
Demoulding: None
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

guide roller

Can you explain the impact of guide rollers on the overall efficiency of material handling systems?

Guide rollers play a significant role in the overall efficiency of material handling systems. Here’s a detailed explanation of their impact:

  • Precise Material Movement:

Guide rollers are designed to guide and support the movement of materials along a desired path. By providing a stable and controlled surface for material conveyance, guide rollers ensure precise movement and positioning. This precision minimizes the risk of material deviation, misalignment, or collisions, allowing for smooth and efficient material flow within the system. Accurate material movement enables efficient processing, reduces downtime, and enhances overall productivity.

  • Reduced Friction and Energy Consumption:

Well-designed guide rollers with low-friction surfaces can significantly reduce the amount of energy required for material handling. By minimizing friction between the guide rollers and the conveyed materials, less power is needed to move the materials along the desired path. This reduction in energy consumption leads to improved energy efficiency and lower operational costs. Additionally, reduced friction helps extend the service life of the guide rollers by minimizing wear and heat generation.

  • Enhanced System Throughput:

Efficient guide rollers contribute to increased system throughput in material handling operations. By facilitating smooth and consistent material flow, guide rollers help eliminate bottlenecks and optimize the overall speed and capacity of the system. When materials can be conveyed quickly and reliably, the system can handle higher volumes of materials, leading to improved productivity and throughput. Guide rollers also enable efficient sorting, merging, or diverting of materials, further enhancing system throughput and flexibility.

  • Improved Product Quality:

The use of guide rollers in material handling systems helps maintain product quality and integrity. By guiding materials along a predetermined path, guide rollers prevent material damage, deformation, or contamination that can occur due to uncontrolled movement or collisions. This results in better product quality and reduces the risk of rework or product rejection. Guide rollers also ensure consistent material positioning, which is crucial for precision operations such as assembly, packaging, or quality control.

  • Minimized Downtime and Maintenance:

Efficient guide rollers can contribute to reduced downtime and maintenance requirements in material handling systems. When guide rollers are properly designed, installed, and maintained, they operate smoothly and reliably, minimizing the risk of failures or disruptions. High-quality guide rollers with durable materials and components can withstand the demands of continuous operation and heavy loads, reducing the need for frequent replacements or repairs. This leads to increased system uptime, reduced maintenance costs, and improved overall equipment effectiveness (OEE).

  • Worker Safety and Ergonomics:

Guide rollers contribute to a safer and more ergonomic working environment in material handling systems. By guiding materials along a predetermined path, guide rollers help prevent material spillage, which can create tripping hazards or pose risks to workers. Additionally, guide rollers facilitate smooth and controlled material movement, reducing the physical strain on workers during manual material handling tasks. This promotes a safer and more comfortable workplace, minimizing the risk of injuries and improving overall worker productivity.

In summary, guide rollers have a significant impact on the overall efficiency of material handling systems. They enable precise material movement, reduce friction and energy consumption, enhance system throughput, improve product quality, minimize downtime and maintenance, and contribute to worker safety and ergonomics. By selecting and maintaining high-quality guide rollers, material handling operations can achieve optimal efficiency, productivity, and cost-effectiveness.

guide roller

What safety considerations should be taken into account when using guide rollers in industrial settings?

When using guide rollers in industrial settings, several safety considerations should be taken into account to ensure the well-being of personnel and the safe operation of equipment. Here are some important safety considerations:

  • Guarding and Enclosure:

Guide rollers should be properly guarded and enclosed to prevent accidental contact with moving parts. Guards and enclosures should be designed and installed in accordance with applicable safety standards and regulations. They should effectively restrict access to the guide rollers, minimizing the risk of entanglement, pinching, or crushing hazards. Adequate guarding and enclosure ensure that only authorized personnel can access the guide rollers for maintenance or inspection purposes, reducing the potential for accidents or injuries.

  • Lockout/Tagout Procedures:

Lockout/tagout procedures should be implemented when performing maintenance or servicing tasks on guide rollers. Lockout/tagout procedures involve isolating and de-energizing the conveyor system, ensuring that it cannot be accidentally started or operated during maintenance activities. This prevents unexpected movement of the guide rollers, reducing the risk of personnel getting caught or injured. Lockout/tagout procedures should be strictly followed, and personnel should be trained on their proper implementation to maintain a safe working environment.

  • Proper Training and Education:

All personnel involved in the operation, maintenance, or servicing of guide rollers should receive proper training and education on safety procedures and best practices. They should be familiar with the potential hazards associated with guide rollers and understand how to safely operate, inspect, and maintain them. Training should cover topics such as lockout/tagout procedures, emergency response protocols, hazard identification, and safe work practices. Regular refresher training sessions should be conducted to reinforce safety awareness and ensure that personnel stay updated with the latest safety guidelines.

  • Maintenance and Inspection:

Regular maintenance and inspection of guide rollers are essential for identifying and addressing potential safety issues. Adequate lubrication, cleaning, and adjustment of guide rollers should be performed according to manufacturer recommendations. Regular inspections should be conducted to check for signs of wear, damage, or misalignment. Any identified issues should be promptly addressed to prevent accidents or equipment failures. A systematic maintenance and inspection program helps ensure that guide rollers are in proper working condition, minimizing the risk of safety incidents.

  • Proper Lifting and Handling:

When lifting or handling guide rollers, proper lifting techniques and equipment should be used to prevent strains, sprains, or other musculoskeletal injuries. Guide rollers can be heavy and awkward to handle, so personnel should receive training on safe lifting practices. Appropriate lifting aids, such as hoists or cranes, should be used when necessary. Additionally, personnel should wear appropriate personal protective equipment (PPE), such as gloves or safety glasses, to protect against potential hazards during lifting and handling operations.

  • Emergency Stop Systems:

Guide rollers should be equipped with emergency stop systems that allow for immediate shutdown of the conveyor system in case of an emergency or hazardous situation. Emergency stop buttons or pull cords should be strategically located and easily accessible along the conveyor line. Personnel should be trained on how to use these emergency stop systems effectively. Regular testing and maintenance of the emergency stop systems should be conducted to ensure their reliable operation during critical situations.

In summary, when using guide rollers in industrial settings, several safety considerations should be taken into account. These include proper guarding and enclosure, implementation of lockout/tagout procedures, providing adequate training and education to personnel, performing regular maintenance and inspections, following proper lifting and handling practices, and ensuring the availability and functionality of emergency stop systems. By prioritizing safety and adhering to these considerations, the risks associated with guide rollers can be minimized, promoting a safe working environment and reducing the likelihood of accidents or injuries.

guide roller

What are the different types and configurations of guide rollers available in the market?

In the market, there are various types and configurations of guide rollers available to cater to different industrial applications. Here’s a detailed explanation of the different types and configurations:

  • Plain Guide Rollers:

Plain guide rollers, also known as cylindrical guide rollers, have a smooth surface without any grooves or flanges. They are commonly used when minimal guidance is required, and the primary function is to support and facilitate smooth movement. Plain guide rollers are suitable for applications where objects or materials need to be guided without significant lateral forces or directional control.

  • Flanged Guide Rollers:

Flanged guide rollers have built-in flanges on one or both sides of the roller. The flanges act as barriers to prevent objects from deviating or slipping off the roller. They provide enhanced lateral guidance and help maintain proper alignment during material handling. Flanged guide rollers are commonly used in conveyor systems, material transport applications, and scenarios where precise tracking and alignment are critical.

  • Grooved Guide Rollers:

Grooved guide rollers have one or more grooves along their circumference. These grooves provide additional guidance and increase the contact area between the roller and the object being transported. The grooves help prevent lateral movement and improve the overall stability of material handling. Grooved guide rollers are commonly used in applications that involve curved tracks, cornering, or situations where objects may be subjected to lateral forces.

  • Tapered Guide Rollers:

Tapered guide rollers have a tapered or conical shape, with a larger diameter at one end and a smaller diameter at the other. The tapered design allows for smooth transitions and alignment when objects move from one roller to another. Tapered guide rollers are often used in conveyor systems, sorting processes, and applications where objects need to be guided through changing directions or different stages of material handling.

  • Cam Follower Guide Rollers:

Cam follower guide rollers have a specialized design with a stud or shaft attached to the roller. They are used in applications where the guide roller needs to follow a specific cam profile or track. The cam follower design allows for precise and controlled movement along the cam surface, making them suitable for applications such as automation, indexing mechanisms, and machinery that require synchronized motion.

  • Adjustable Guide Rollers:

Adjustable guide rollers are designed with a mechanism that allows for easy adjustment of the roller’s position, height, or angle. They offer flexibility in aligning and positioning the guide rollers to accommodate different material handling requirements or changing operational conditions. Adjustable guide rollers are commonly used in conveyor systems, assembly lines, and applications where frequent adjustments or customization are necessary.

It’s important to note that these are general categories, and there can be variations and combinations of different features and configurations available in the market. The choice of guide roller type and configuration depends on factors such as the specific application, material handling needs, load requirements, and environmental conditions.

In summary, the market offers different types and configurations of guide rollers, including plain guide rollers, flanged guide rollers, grooved guide rollers, tapered guide rollers, cam follower guide rollers, and adjustable guide rollers. Each type and configuration caters to specific material handling needs and provides varying levels of guidance, support, and control.

China Standard CHINAMFG Good Quality and Price Rg4-30-2mcrf Durable Wire Guide Roller  China Standard CHINAMFG Good Quality and Price Rg4-30-2mcrf Durable Wire Guide Roller
editor by Dream 2024-05-17

China Good quality Belt Conveyor Idler Wholesale Roller Conveyor Side Guide Roller

Product Description

 

Yuanxin Machinery conveyor rollers idlers includes both steel and HDPE carry and return rollers, rubber disc impact and return rollers. The rollers and frames are produced to different standards or designs according to your special working condition requirements with innovative and maintenance saving designs. Our rollers are equipped with quality deep ball bearings for maximum life. Our rollers are suitable for belt widths 400-2000. Larger sizes also available on your special requirements. Our roller service life can be 30,000 to 50,000 hours under normal working condition and maintenance.

Product Parameters

 

Basic information
1 Brand LONGBAOYUAN
2 Roller Diameter 63.5 to 219mm.
3 Roller Length 190 to 3500mm.
4 Roller Pipe: Q235 high-precision ERW seam carbon steel pipe with roundness and straightness to ensure well-balanced rotation.
5 Shaft Accurate shaft are made of cold-drawn bright round steel, which is superior in corrosion resistance and stiffness.We have strict control over tolerance of shaft dimension and surface quality.The service lifespan can be well secured and proloned.
6 Bearing: Ball bearing provided with good clearance, shield deep-groove to ensure a nice fit and off-set any expected temperature rise during operation by means of internal clearance OR according to your requirements.
7 Bearing Brand Domestic famous brands HangZhou and HangZhou production, or according to your requirements.
8 Seals Optimum structure with non-contact type, durable, less rotation-resistance and long life-span feautres, particularly for a long-distance and large capacity conveyor for bulk material. It is approved by national authoritative organization that seal is dustproof and waterproof, its performance has a long way exceeded the GB and JIS standard after our repeated research and development.
9 Color Black, green, red, blue, yellow and customized colors are available
10 Life Time 30000-50000hours
11 Production 800-1000pcs/day.

Conveyor Roller Idler Parameters

Standard Diameter Length scope ( mm) Bearings Type Idler’s Shell Wall Thickness
mm Inch (Min~Max)
63.5 2 1/2 150~3500 204 3.0mm~3.75mm
76 3 150~3500 204 205 3.0mm~4.0mm
89 3 1/3 150~3500 204 205 3.0mm~4.0mm
102 4 150~3500 3.5mm~4.0mm
108 4 1/4 150~3500 3.5mm~4.0mm
114 4 1/2 150~3500 3.5mm~4.5mm
127 5 150~3500 3.5mm~4.5mm
133 5 1/4 150~3500 306 3.5mm~4.5mm
140 5 1/2 150~3500 306 3.5mm~4.5mm
152 6 150~3500 4.0mm~4.5mm
159 6 1/4 150~3500 4.0mm~4.5mm
165 6 1/2 150~3500 308 4.5mm~6.0mm
177.8 7 150~3500 309 4.5mm~6.0mm
190.7 7 1/2 150~3500 309 4.5mm~6.0mm
194 7 5/8 150~3500 310 4.5mm~6.0mm
219 8 5/8 150~3500 4.5mm~6.0mm

Our Advantages

ZheJiang Yuanxin Conveyor Machinery Co., Ltd
1, Over 20 years experience on design, producing, install, innovate and maintain belt conveyor equipment, components and services.
2, Certified by SGS, BV and ISO9001:2008
3, Mine products safety mark certificate issued by national administration of work safety mine safety standard center.
4, High-quality raw material selection guarantee rollers working lifetime 3-50000 hours.
5, Energy Saving: roller rotating resistance is 30% lower than national standards, which can save 40% power consumption per hour.
6. Each roller would be through strict inspection and test to ensure every out coming roller are of true high quality.
7. Our return/carrier/trough roller has high precision structure, composing as many as 9 seal parts which ensure the roller good capability of water and dust resistance. With rubber or steel seals, multi-labyrinth seals.
8. The bearing housing and tube is full welded to ensure the well contact of the whole roller. Grease is permanent lubricant.
9. Roller surface could be painted any color as per customer request.
10. Material: normally Q235 tube (specially for conveyor roller), A3 cold-drawn shaft (Could be of very high precision to meed different customer requirement.)
Welcome to contact us at any time for conveyor roller/idler. We are professional and excellent in technology and service.
We know how to make our converyor roller to move your business!

Applications

 

 

Packaging & Shipping

Company Profile

You May Also Need

 

FAQ

Q1. Can I have a sample order for conveyor roller
Yes, we welcome sample order to test and check quality.
Q2. What about the lead time?
1) 2–3 days for sample
2) 20–30 days for mass production. If urgent,we have green channel.
Q3. Do you have any MOQ limit for conveyor roller order?
Low MOQ, 1pc for sample checking is available
Q4. Is it OK to print my logo on conveyor roller product?
Yes. Please inform us your logo or design before mass production
Q5. How to guarantee your quality?
We are 1 of the top suppliers of International famous mining company over years. Excellent quality is well accepted.
Please contact us for more details.

 

 

 

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Material: Steel
Application: Chemical Industry, Grain Transportation, Mining Transport, Power Plant, Quarrying, Cement and Grain Depot Transport
Structure: Variable Groove Angle Roller
Samples:
US$ 0/Piece
1 Piece(Min.Order)

|

Order Sample

Free conveyor roller idler sample available
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

guide roller

How do guide rollers contribute to precise and controlled motion in conveyor systems?

In conveyor systems, guide rollers play a crucial role in ensuring precise and controlled motion. Here’s a detailed explanation of how guide rollers contribute to achieving precise and controlled motion in conveyor systems:

  • Guidance and Alignment:

Guide rollers are strategically positioned along the conveyor system to provide continuous guidance and alignment for the transported materials or objects. The design of guide rollers, such as flanges, grooves, or tapered shapes, helps maintain the proper orientation and prevents lateral movement or misalignment. By guiding the materials or objects along the desired path, guide rollers ensure precise and controlled motion, preventing deviation or disruptions in the conveyor system.

  • Smooth and Low-Friction Movement:

Guide rollers are designed to offer smooth and low-friction movement. The surface configuration of guide rollers, often smooth or with minimal friction characteristics, reduces resistance and allows materials or objects to glide easily along the conveyor. This smooth movement minimizes jerks, vibrations, and inconsistencies, contributing to precise and controlled motion. It facilitates the accurate positioning and delivery of materials or objects to their intended destinations within the conveyor system.

  • Load Distribution and Stability:

Guide rollers distribute the load evenly across the conveyor system, contributing to stability and controlled motion. As materials or objects pass over the guide rollers, the load is shared among multiple rollers, preventing excessive stress on any individual roller. This load distribution minimizes the risk of roller damage, wear, or failure, ensuring consistent and reliable motion. The stability provided by guide rollers allows for precise control and avoids issues like wobbling, tilting, or material spillage during transportation.

  • Acceleration and Deceleration Control:

Guide rollers assist in controlling the acceleration and deceleration of materials or objects within the conveyor system. By adjusting the spacing and configuration of guide rollers, the speed changes can be managed more precisely. Guide rollers can be strategically positioned closer together to slow down the motion or spaced farther apart to allow for faster speeds. This control over acceleration and deceleration ensures a smooth and controlled transition between different conveyor sections or when starting and stopping the conveyor system.

  • Cam Follower Rollers for Synchronized Motion:

In conveyor systems that require synchronized motion or precise positioning, cam follower rollers are used. These specialized guide rollers are designed to follow a specific cam profile or track, allowing for accurate and controlled movement. Cam follower rollers ensure that multiple materials or objects on the conveyor system move in sync, maintaining precise spacing and alignment. They are commonly used in applications such as indexing mechanisms, assembly lines, or processes that require coordinated motion.

Overall, guide rollers contribute to precise and controlled motion in conveyor systems through their guidance and alignment capabilities, smooth and low-friction movement, load distribution and stability, control over acceleration and deceleration, and the use of specialized cam follower rollers. By incorporating these design features, guide rollers facilitate accurate material handling, minimize errors or deviations, and ensure efficient and reliable operation of conveyor systems.

guide roller

Can you provide insights into the importance of proper installation and alignment of guide rollers?

Proper installation and alignment of guide rollers are crucial for ensuring optimal performance, longevity, and safety in material handling systems. Here are some insights into their importance:

  • Accurate Material Guidance:

Proper installation and alignment of guide rollers ensure accurate material guidance along the desired path. When guide rollers are correctly installed and aligned, they create a well-defined trajectory for the materials to follow, preventing material deviation, misalignment, or collisions. Accurate material guidance is essential for maintaining process efficiency, preventing disruptions, and avoiding damage to both the materials being handled and the equipment itself.

  • Reduced Wear and Damage:

Correctly installed and aligned guide rollers minimize wear and damage to both the guide rollers and the materials being conveyed. Misalignment or improper installation can result in excessive friction, uneven loading, or unnecessary stress on the guide rollers. This can lead to premature wear, deformation, or failure of the rollers, as well as damage or degradation of the conveyed materials. Proper alignment ensures even distribution of forces and reduces the risk of wear, extending the service life of the guide rollers and preserving the integrity of the materials.

  • Optimized Energy Efficiency:

Properly installed and aligned guide rollers contribute to optimized energy efficiency in material handling systems. Misalignment or improper installation can create additional friction, requiring more power to move the materials along the desired path. This results in increased energy consumption and higher operational costs. On the other hand, accurate alignment reduces friction, minimizes energy losses, and improves overall energy efficiency. By ensuring proper installation and alignment, material handling systems can operate more efficiently and cost-effectively.

  • Prevention of Material Jams and Blockages:

Guide rollers that are installed and aligned correctly help prevent material jams and blockages within the system. Misalignment or improper installation can cause materials to deviate from the intended path, leading to obstructions or accumulation in critical areas. These blockages can disrupt the material flow, impair system performance, and potentially damage the equipment. Proper alignment and installation of guide rollers ensure smooth and unobstructed material movement, minimizing the risk of jams and blockages and maintaining uninterrupted operation.

  • Enhanced System Stability and Safety:

Proper installation and alignment of guide rollers contribute to system stability and safety. Misaligned or improperly installed guide rollers can introduce instability, vibrations, or wobbling during material handling operations. This instability not only affects the accuracy and efficiency of material movement but also poses safety risks for personnel and equipment. Accurate alignment ensures stable and controlled material conveyance, reducing the likelihood of accidents, collisions, or equipment damage. It promotes a safer working environment and protects the integrity of the material handling system.

In summary, proper installation and alignment of guide rollers are vital for accurate material guidance, reducing wear and damage, optimizing energy efficiency, preventing material jams, enhancing system stability, and ensuring safety in material handling operations. By paying close attention to the installation and alignment processes, operators can maximize the performance, reliability, and lifespan of guide rollers while minimizing the risk of disruptions and costly repairs.

guide roller

In what industries or scenarios are guide rollers commonly employed?

Guide rollers find widespread application in various industries and scenarios where precise guidance and support of moving objects are required. Here’s a detailed explanation of the industries or scenarios where guide rollers are commonly employed:

  • Manufacturing:

In the manufacturing industry, guide rollers are extensively used in production lines and assembly processes. They guide and support the movement of components, subassemblies, or finished products along conveyor systems, ensuring smooth and efficient material flow. Guide rollers are employed in industries such as automotive, electronics, consumer goods, and industrial equipment manufacturing.

  • Material Handling and Logistics:

In material handling and logistics operations, guide rollers play a vital role in conveyor systems and transportation equipment. They guide packages, parcels, or pallets through sorting, distribution, and storage processes, enhancing productivity and reducing handling errors. Guide rollers are commonly employed in warehouses, distribution centers, airports, and shipping facilities.

  • Packaging:

The packaging industry extensively utilizes guide rollers in various packaging machinery and systems. They facilitate the smooth movement and alignment of packaging materials, such as boxes, cartons, bottles, or bags, during filling, sealing, labeling, and palletizing operations. Guide rollers contribute to efficient packaging processes and consistent product quality.

  • Printing and Paper Handling:

In printing and paper handling applications, guide rollers are essential components in printing presses, paper mills, and document processing equipment. They guide paper, cardstock, or other printable media through the printing or processing stages, ensuring accurate registration, smooth feeding, and reliable operation. Guide rollers are critical in maintaining print quality and preventing paper jams or misalignments.

  • Textile and Garment Industry:

The textile and garment industry utilizes guide rollers in various stages of textile production, including spinning, weaving, knitting, and fabric finishing. They guide yarns, threads, or fabrics through machinery, ensuring proper tension, alignment, and controlled movement. Guide rollers contribute to high-quality textile production and efficient fabric handling.

  • Automation and Robotics:

In automation and robotics applications, guide rollers are employed in robotic arms, pick-and-place systems, and automated guided vehicles (AGVs). They guide the movement of robotic components, tools, or end-effectors, ensuring precise positioning, accurate path following, and collision avoidance. Guide rollers enhance the reliability and efficiency of automated processes.

  • Woodworking and Furniture:

In woodworking and furniture manufacturing, guide rollers are used in saws, routers, planers, and other woodworking machinery. They guide and support workpieces during cutting, shaping, and milling operations, ensuring precise and controlled material removal. Guide rollers contribute to the accuracy and quality of woodworking processes.

In summary, guide rollers are commonly employed in industries and scenarios that involve material handling, manufacturing, logistics, packaging, printing, textile production, automation, woodworking, and furniture manufacturing. Their versatility and ability to provide accurate guidance and support make them essential components in various industrial applications.

China Good quality Belt Conveyor Idler Wholesale Roller Conveyor Side Guide Roller  China Good quality Belt Conveyor Idler Wholesale Roller Conveyor Side Guide Roller
editor by Dream 2024-05-17

China wholesaler Customized Hard Alloy Cemented Tungsten Carbide Guide Roller for Wire Rod Mills

Product Description

 

    Product Name       Material Grade              Composition                               Physics Performance         size
Tungsten carbide
     Roller
              YG15       WC
      85%
     Co
     15%
  Hardness
   88HRA
     Density
13.95~14.15 g/m³
Bending Strength
≥2300 N/mm
As per drawing


Our Advantages:

1) 100% virgin raw material

2) Customized,We have over 15 years’ experience in the shaped tungsten carbide products

3) Various kinds of material grades are available based on customer’s application

4) we have professional advanced production line and inspection equipment to ensure high quality products.

5) Advanced technology with precision ground and high polishing process

6) High wear resistance, high hardness and impact toughness

7) Excellent after-sales service

FAQ:

1.Q: How about the MOQ?
   A: 1PC or more, it is according customer’s requirements.

2. Q:How about the delivery time if I have my own drawing product to do?
    A:It is about 1 month, but it is depends on the drawing, if more difficult to do, it will be more than 1 month, so, please kindly send me your drawing for checking.

3. Q:How to choose the best Material Grade  for a new product?
    A: Usually, we made the goods according to customer’s requirements, if you are really not sure the material grade, please kindly  let me know what it is used for, we will suggest you to choose which grade, then we will make you samples to test until the test is successful.

Any more details, please kindly contact Ms.Suby for confirmation, thank you.
 
 
  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Product Type: Tungsten Carbide Roller
Material: Tungsten Carbide
Carbon Content: Wc=85%, Co=15%
PCD: 88hra
Hardness: 88hra
Yg15: Wc=85%, Co=15%
Customization:
Available

|

guide roller

What maintenance practices are recommended for guide rollers to ensure optimal functionality?

Maintaining guide rollers is essential to ensure their optimal functionality and longevity. Here are some recommended maintenance practices for guide rollers:

  • Regular Inspection:

Perform regular visual inspections of the guide rollers to check for any signs of damage, wear, or misalignment. Look for cracks, dents, or excessive wear on the roller surface. Inspect the mounting brackets, bearings, and axles for any looseness or misalignment. Early detection of issues can help prevent further damage and ensure the guide rollers function properly.

  • Cleaning:

Keep the guide rollers clean by removing any dirt, debris, or material buildup. Use a soft brush or compressed air to gently clean the roller surfaces and remove any contaminants that may affect their performance. For stubborn residue, mild cleaning agents can be used, following the manufacturer’s recommendations. Clean guide rollers help maintain smooth operation and prevent potential issues caused by contamination.

  • Lubrication:

Proper lubrication is crucial for the smooth operation and longevity of guide rollers. Follow the manufacturer’s guidelines regarding the type and frequency of lubrication required. Apply lubricants to the bearings, axles, or other moving parts as recommended. Adequate lubrication reduces friction, minimizes wear, and helps prevent premature failure or damage to the guide rollers.

  • Tension Adjustment:

If the guide rollers are part of a system where tension adjustment is necessary, regularly check and adjust the tension settings as required. Ensure that the tension is within the recommended range to prevent excessive stress on the guide rollers or the conveyed materials. Proper tension adjustment helps maintain accurate alignment and prevents issues such as material slipping or misalignment.

  • Replacement of Worn Components:

Monitor the condition of the guide roller components, such as bearings, axles, or mounting brackets, and replace any worn or damaged parts promptly. Worn bearings can cause increased friction, leading to reduced performance and potential damage to the guide rollers. Damaged axles or mounting brackets can affect the stability and alignment of the guide rollers. Regularly inspect and replace any worn or damaged components to ensure optimal functionality.

  • Alignment and Calibration:

Periodically check and adjust the alignment of the guide rollers to ensure they are properly positioned for accurate material guidance. Misaligned guide rollers can cause material deviation, tracking issues, or increased wear. Additionally, if the guide rollers are part of a system with sensors or automated controls, calibrate the system as per the manufacturer’s instructions to maintain accurate positioning and control.

  • Training and Safety:

Ensure that personnel responsible for operating or maintaining equipment with guide rollers receive appropriate training. Proper training can help operators understand the maintenance requirements, safety protocols, and best practices for guide roller operation. Promote a safety culture where operators are encouraged to report any abnormalities or concerns related to the guide rollers promptly.

By following these recommended maintenance practices, guide rollers can maintain optimal functionality, extend their service life, and contribute to efficient and reliable material handling and transport.

guide roller

How does the choice of guide rollers affect the overall performance and reliability of material handling systems?

The choice of guide rollers plays a critical role in determining the overall performance and reliability of material handling systems. The selection of appropriate guide rollers can have a significant impact on various aspects of system operation. Here are some key ways in which the choice of guide rollers affects the performance and reliability of material handling systems:

  • Conveyor Alignment and Tracking:

Guide rollers are responsible for maintaining proper alignment and tracking of the conveyor belt or other conveying surfaces. The design and quality of guide rollers directly influence the ability of the system to keep the belt or material on the intended path. Well-designed guide rollers with precise dimensions and smooth surfaces minimize belt misalignment, reducing the risk of material spillage, jams, and premature wear. Properly aligned guide rollers ensure smooth and stable material movement, enhancing the overall efficiency and reliability of the system.

  • Material Handling Efficiency:

The choice of guide rollers can affect the efficiency of material handling operations. Guide rollers with low rolling resistance and minimal friction facilitate smooth and effortless material movement along the conveyor system. They reduce the power requirements and energy consumption, optimizing the overall efficiency of the system. Additionally, guide rollers that are designed to handle specific types of materials, such as heavy loads or fragile items, can improve handling efficiency by providing appropriate support and reducing the risk of damage or product loss.

  • Component Durability:

High-quality guide rollers made from durable materials can significantly enhance the reliability and longevity of material handling systems. Guide rollers that are resistant to wear, corrosion, and impact are less likely to fail prematurely or require frequent replacement. They can withstand the demanding operating conditions commonly encountered in industrial settings, minimizing downtime and maintenance costs. Choosing guide rollers with robust construction and suitable coatings or finishes ensures the reliability of the system and reduces the risk of unexpected failures.

  • Noise and Vibration:

The selection of guide rollers can impact the level of noise and vibration produced by the material handling system. Guide rollers that are properly designed and manufactured with precision help reduce noise generation during operation. They minimize the chances of rattling, squeaking, or grinding noises, creating a quieter and more comfortable working environment. Additionally, guide rollers that effectively dampen vibrations contribute to the smooth and stable operation of the system, reducing stress on components and improving overall reliability.

  • Maintenance and Serviceability:

The choice of guide rollers can affect the ease of maintenance and serviceability of material handling systems. Guide rollers that are designed for easy installation, adjustment, and replacement simplify maintenance tasks and reduce downtime. Considerations such as accessible mounting arrangements, quick-release mechanisms, and standardized dimensions can make maintenance procedures more efficient. By selecting guide rollers that are user-friendly and facilitate routine maintenance, the reliability of the system can be improved, and the overall cost of ownership can be reduced.

In summary, the choice of guide rollers significantly influences the overall performance and reliability of material handling systems. The selection of appropriate guide rollers ensures proper alignment and tracking, enhances material handling efficiency, improves component durability, reduces noise and vibration, and facilitates maintenance and serviceability. By considering factors such as design, quality, material compatibility, and specific application requirements, the right guide rollers can be chosen to optimize system performance, increase reliability, and support efficient material handling operations.

guide roller

What are the different types and configurations of guide rollers available in the market?

In the market, there are various types and configurations of guide rollers available to cater to different industrial applications. Here’s a detailed explanation of the different types and configurations:

  • Plain Guide Rollers:

Plain guide rollers, also known as cylindrical guide rollers, have a smooth surface without any grooves or flanges. They are commonly used when minimal guidance is required, and the primary function is to support and facilitate smooth movement. Plain guide rollers are suitable for applications where objects or materials need to be guided without significant lateral forces or directional control.

  • Flanged Guide Rollers:

Flanged guide rollers have built-in flanges on one or both sides of the roller. The flanges act as barriers to prevent objects from deviating or slipping off the roller. They provide enhanced lateral guidance and help maintain proper alignment during material handling. Flanged guide rollers are commonly used in conveyor systems, material transport applications, and scenarios where precise tracking and alignment are critical.

  • Grooved Guide Rollers:

Grooved guide rollers have one or more grooves along their circumference. These grooves provide additional guidance and increase the contact area between the roller and the object being transported. The grooves help prevent lateral movement and improve the overall stability of material handling. Grooved guide rollers are commonly used in applications that involve curved tracks, cornering, or situations where objects may be subjected to lateral forces.

  • Tapered Guide Rollers:

Tapered guide rollers have a tapered or conical shape, with a larger diameter at one end and a smaller diameter at the other. The tapered design allows for smooth transitions and alignment when objects move from one roller to another. Tapered guide rollers are often used in conveyor systems, sorting processes, and applications where objects need to be guided through changing directions or different stages of material handling.

  • Cam Follower Guide Rollers:

Cam follower guide rollers have a specialized design with a stud or shaft attached to the roller. They are used in applications where the guide roller needs to follow a specific cam profile or track. The cam follower design allows for precise and controlled movement along the cam surface, making them suitable for applications such as automation, indexing mechanisms, and machinery that require synchronized motion.

  • Adjustable Guide Rollers:

Adjustable guide rollers are designed with a mechanism that allows for easy adjustment of the roller’s position, height, or angle. They offer flexibility in aligning and positioning the guide rollers to accommodate different material handling requirements or changing operational conditions. Adjustable guide rollers are commonly used in conveyor systems, assembly lines, and applications where frequent adjustments or customization are necessary.

It’s important to note that these are general categories, and there can be variations and combinations of different features and configurations available in the market. The choice of guide roller type and configuration depends on factors such as the specific application, material handling needs, load requirements, and environmental conditions.

In summary, the market offers different types and configurations of guide rollers, including plain guide rollers, flanged guide rollers, grooved guide rollers, tapered guide rollers, cam follower guide rollers, and adjustable guide rollers. Each type and configuration caters to specific material handling needs and provides varying levels of guidance, support, and control.

China wholesaler Customized Hard Alloy Cemented Tungsten Carbide Guide Roller for Wire Rod Mills  China wholesaler Customized Hard Alloy Cemented Tungsten Carbide Guide Roller for Wire Rod Mills
editor by Dream 2024-05-16

China high quality New Type Paper Machine Rock Roll Rock Roll Belt Conveyor Guide Roller Stone Roller

Product Description

specific granite stone roller: it is the first-class granite in  the world, the granite used in this stone roller is a pure natural magma
formed by a volcanic eruption. This kind of stone has high density, anti-magnetic, anti-vibration, and high-pressure resistance; the
line pressure can reach 350KN/m; each cubic meter is 800 kg heavier than ordinary granite; the color is blue-black, high acid and
alkali resistance, no metal, and uniform particles, never fall off; can increase pressure on wet paper, good dehydration, easy to lead
paper, easy to peel, easy to dry, not easy to break the paper. It can produce high-quality paper products with high tensile strength
and high surface smoothness, which are favored by users all over the world.

 

Packaging & Shipping

FAQ

 

Q: Are you a manufacturer?
A: Yes, we can provide you with professional production and processing.

Q: How to install the machine?
A: We can help the installation by video, email, picture. For large projects, we can arrange for our workers to help you install in your country.

Q: How do you package the product?
A: Usually as export standard packing or as your request.

Q: What is your available shipping port?
A: HangZhou Port, ZheJiang Port and so on.

Q: Can it be customized?
A: Yes, according to the detailed drawings you provide.

 

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Have
Warranty: One Year
Certification: ISO 9001:2000, CE
Surface Treatment: Polishing
Manufacturing Process: Cnc Milling
Material: Wulong Granite
Customization:
Available

|

guide roller

Can you provide examples of products or machinery that commonly use guide rollers?

Guide rollers are used in various industries and applications where precise and controlled motion of materials or objects is required. Here are some examples of products or machinery that commonly use guide rollers:

  • Conveyor Systems:

Guide rollers are extensively used in conveyor systems across industries such as manufacturing, logistics, and warehousing. They are essential components in belt conveyors, roller conveyors, and gravity conveyors. Guide rollers ensure smooth and accurate movement of materials or objects along the conveyor, preventing misalignment, deviations, and material spillage. Conveyor systems in industries like automotive, food and beverage, e-commerce, and package handling rely on guide rollers for efficient material handling and transport.

  • Printing and Packaging Machinery:

In printing and packaging machinery, guide rollers play a critical role in maintaining precise alignment and tension control of materials, such as paper, film, or labels. They are used in machinery for processes like printing, laminating, slitting, cutting, and folding. Guide rollers guide the materials through various stages, ensuring accurate positioning and preventing wrinkles, creases, or misalignment. Printing presses, label applicators, paper converting machines, and packaging lines commonly incorporate guide rollers to achieve high-quality output and efficient production.

  • Textile Machinery:

Textile machinery, including weaving machines, knitting machines, and spinning machines, utilize guide rollers in their operations. Guide rollers guide the fabric or yarn through different stages of the manufacturing process, ensuring proper alignment, tension, and controlled movement. They help prevent yarn tangling, fabric distortions, or misalignment during weaving, knitting, or spinning. Guide rollers are crucial components in textile machinery, enabling efficient and precise fabric production.

  • Paper and Printing Industry:

In the paper and printing industry, guide rollers are utilized in various equipment and processes. For example, in offset printing presses, guide rollers assist in accurate paper feeding and alignment, ensuring precise registration of colors and images. In paper converting machines, guide rollers help guide the paper through cutting, folding, or gluing operations. Guide rollers also find application in bookbinding machines, where they facilitate the movement of paper signatures or book blocks through the binding process.

  • Metal and Woodworking Machinery:

Guide rollers are commonly used in metal and woodworking machinery to guide and support workpieces during cutting, shaping, or milling operations. In sawing machines, guide rollers ensure proper alignment and smooth movement of the material being cut. They also help prevent blade deflection or workpiece deviation. In woodworking routers or planers, guide rollers assist in controlling the movement of the workpiece, allowing for precise shaping or milling. Guide rollers contribute to increased accuracy and efficiency in metal and woodworking processes.

  • Automated Guided Vehicles (AGVs):

Automated Guided Vehicles (AGVs) used in material handling and logistics applications often incorporate guide rollers. Guide rollers are installed on AGVs to follow guide tracks or lines embedded in the floor or along the designated paths. They ensure accurate navigation and controlled motion of AGVs within warehouses, distribution centers, or manufacturing facilities. Guide rollers help AGVs maintain their intended paths, avoid obstacles, and achieve efficient and safe material transport.

These are just a few examples illustrating the wide range of products and machinery that commonly use guide rollers. Their versatility and ability to provide precise and controlled motion make guide rollers integral components in numerous industries, contributing to improved efficiency, productivity, and quality in various material handling and manufacturing processes.

guide roller

What are the signs that indicate a need for guide roller replacement or maintenance, and how can they be diagnosed?

Proper maintenance and timely replacement of guide rollers are crucial for the efficient and safe operation of conveyor systems. Here are some signs that indicate a need for guide roller replacement or maintenance, along with diagnostic methods:

  • Excessive Noise:

If guide rollers produce excessive noise during operation, it may indicate a problem. Unusual grinding, squeaking, or rattling noises can be signs of worn-out or damaged guide rollers. To diagnose the issue, the conveyor system should be observed and listened to during operation. If the noise persists even after cleaning or lubricating the guide rollers, it may be necessary to inspect them more closely for wear, misalignment, or other issues.

  • Uneven or Erratic Material Movement:

If materials on the conveyor system exhibit uneven or erratic movement, it could be a sign of guide roller problems. Misaligned or worn-out guide rollers may cause materials to veer off course, tilt, or become stuck. Visual observation of material movement along the conveyor path can help diagnose this issue. If materials consistently deviate from the intended path or exhibit inconsistent movement, it may be necessary to inspect the guide rollers for proper alignment, damage, or wear.

  • Excessive Vibration:

Excessive vibration in the conveyor system can indicate problems with guide rollers. Misaligned or damaged guide rollers can cause increased vibration, which can affect the overall stability and performance of the system. To diagnose this issue, the conveyor system should be observed during operation. Excessive vibration can be visually detected or felt by touching the conveyor frame or components. If excessive vibration is present, the guide rollers should be inspected for alignment issues, damage, or excessive wear.

  • Uneven Wear Patterns:

Inspecting the wear patterns on guide rollers can provide valuable information about their condition. Uneven wear patterns, such as flat spots, grooves, or excessive wear on specific areas, may indicate misalignment, improper loading, or damage to the guide rollers. Visual inspection of the guide rollers and comparing the wear patterns across multiple rollers can help diagnose this issue. If significant uneven wear is observed, it may be necessary to replace the affected guide rollers and investigate the underlying causes.

  • Physical Damage:

Physical damage to guide rollers, such as cracks, breaks, or deformations, is a clear indication that maintenance or replacement is needed. Visual inspection of the guide rollers should be conducted regularly to identify any visible signs of damage. If damaged guide rollers are detected, they should be replaced promptly to prevent further deterioration and potential system failures.

  • Increased Friction or Resistance:

If there is a noticeable increase in friction or resistance during the movement of the conveyor system, it may indicate problems with the guide rollers. Excessive friction can lead to increased power consumption, reduced efficiency, and accelerated wear of other components. To diagnose this issue, the conveyor system should be observed for any signs of dragging, sticking, or increased effort required for material movement. If increased friction or resistance is present, the guide rollers should be inspected for proper lubrication, cleanliness, or signs of damage.

In summary, several signs indicate a need for guide roller replacement or maintenance, including excessive noise, uneven or erratic material movement, excessive vibration, uneven wear patterns, physical damage, and increased friction or resistance. These signs can be diagnosed through visual observation, listening to the conveyor system during operation, inspecting wear patterns, checking for physical damage, and monitoring the overall performance and behavior of the system. Regular inspection and proactive maintenance of guide rollers are essential to ensure optimal conveyor system performance and prevent potential safety hazards.

guide roller

What is a guide roller, and how is it used in various industrial applications?

A guide roller is a mechanical component used in various industrial applications to guide and support the movement of objects along a predetermined path. Here’s a detailed explanation of what a guide roller is and how it is used in different industrial applications:

  • Definition and Construction:

A guide roller, also known as a tracking roller or conveyor roller, is a cylindrical or barrel-shaped component typically made of metal or durable plastic. It is designed with a central axle and bearings that allow it to rotate freely. The outer surface of the guide roller is usually smooth or equipped with grooves or flanges to ensure proper alignment and guidance of the moving object.

  • Industrial Applications:

Guide rollers find application in a wide range of industrial sectors, including manufacturing, material handling, transportation, and logistics. Some common industrial applications include:

  • Conveyor Systems:

Guide rollers are extensively used in conveyor systems to support and guide the movement of conveyor belts or other types of conveyance surfaces. They help maintain proper alignment and prevent the belt from wandering or slipping off the designated path. Guide rollers are strategically positioned along the conveyor to ensure smooth and efficient material handling, reducing the risk of jams, spills, or product damage.

  • Packaging Machinery:

In packaging machinery, guide rollers assist in the precise movement and positioning of packaging materials, such as boxes, cartons, or bags. They ensure smooth transitions and accurate alignment during processes such as filling, sealing, labeling, and palletizing. Guide rollers play a crucial role in maintaining the overall efficiency and reliability of packaging operations.

  • Printing and Paper Handling:

Guide rollers are used in printing and paper handling equipment to guide paper or other printable media through the printing or processing stages. They help prevent paper misalignment, wrinkling, or skewing, ensuring accurate registration and consistent print quality. Guide rollers are also employed in paper cutting, folding, and binding machines to ensure precise paper movement and reliable operation.

  • Textile Machinery:

In textile manufacturing, guide rollers are utilized in various machinery, such as spinning frames, weaving looms, and fabric finishing equipment. They guide yarns, threads, or fabrics through different stages of production, ensuring proper tension and alignment. Guide rollers contribute to the overall quality and efficiency of textile processes, minimizing defects and improving productivity.

  • Material Handling Equipment:

Guide rollers are integral components in material handling equipment, such as lift trucks, pallet jacks, and automated guided vehicles (AGVs). They facilitate the smooth movement of loads and assist in accurate positioning and maneuvering. Guide rollers are often used in conjunction with tracks or rails to ensure stable and controlled movement in various industrial environments.

In conclusion, a guide roller is a mechanical component used to guide and support the movement of objects along a predetermined path in various industrial applications. They play a critical role in maintaining proper alignment, preventing misalignment or slippage, and ensuring smooth and efficient operation. Whether it’s in conveyor systems, packaging machinery, printing equipment, textile machinery, or material handling applications, guide rollers contribute to the overall performance, reliability, and productivity of industrial processes.

China high quality New Type Paper Machine Rock Roll Rock Roll Belt Conveyor Guide Roller Stone Roller  China high quality New Type Paper Machine Rock Roll Rock Roll Belt Conveyor Guide Roller Stone Roller
editor by Dream 2024-05-16

China Good quality Bulk Material Guide Conveyor Roller with CE

Product Description

 

Description CEMA,  DIN, JIS, AS, SABS, ISO Standard Design & JXIHU (WEST LAKE) DIS. ODM
Pipe 1)  Material : Q235 carbon steel equal to DIN S235JR
2)  Roller Diameter : φ63.5mm ~ φ219mm / 2 1/2 inch ~ 8 5/8 inch
3)  Roller Length:  150mm ~ 3000 mm
4)  Thickness : 3.0 ~6.0 mm
Shaft 1)  Material : 45# steel equal to DIN C45
2)  Cold-drawn bright round steel
3)  Shaft Diameter:  20mm,  25mm,  30mm, 40mm, 45mm, 50mm
Bearing 1)  Single Row Deep Groove Ball Bearing 2RS&ZZ with C3 clearance
2)  Brand: SKF,FAG,NSK,HRB, LYC, CHINAMFG or according to your requirement
Bearing Housing 1)  Material : Q235 carbon steel equal to DIN S235JR
2)  Cold press working fit ISO M7 accuracy
3)  Material thickness: 2.5mm ~ 5.0mm
Seals 1)  Labyrinth seal, nylon 6 material
2)  JXIHU (WEST LAKE) DIS.’s patented product
Grease 2# Lithium grease lubricant
Painting 1)  Ordinary painting, hot galvanized painting, Powder painting
2)  Color: Black, red, yellow, blue or according to your requirement

Qustions Answer
Plant Size 65,000 Square Meters
Sample Policy sample is available for free.But we don't bear the Express cost.
MOQ 10 sets for idlers;1 pcs for pulley
Customization  Accept Customization 
Delivery Time 15-20days after receiving the deposit
Payment Term 30% T/T in advance, then 70%T/T before shipment.

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Material: Carbon Steel
Surface Treatment: Baking Paint
Export Market: Global
Application: Bulk Material
Color: Customized
Transport Package: Wooden Packages
Samples:
US$ 1/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

guide roller

How does the choice of materials impact the performance of guide rollers in different environments?

The choice of materials for guide rollers significantly impacts their performance in different environments. Here’s a detailed explanation of how material selection affects the performance of guide rollers:

  • Wear Resistance:

Guide rollers are subjected to continuous contact and friction with the conveyed materials or objects. The choice of materials with high wear resistance is crucial to ensure the longevity and performance of guide rollers. Materials such as steel, stainless steel, or polyurethane are commonly used for guide rollers due to their excellent wear resistance properties. These materials can withstand the abrasion and wear caused by repetitive contact with the conveyed materials, resulting in extended service life and reliable performance in demanding environments.

  • Corrosion Resistance:

In environments where guide rollers are exposed to moisture, chemicals, or corrosive substances, selecting materials with high corrosion resistance is essential. Stainless steel is a popular choice for guide rollers in corrosive environments due to its resistance to rust and corrosion. Stainless steel guide rollers can withstand the effects of water, chemicals, and harsh substances, ensuring long-term performance and preventing premature failure or degradation due to corrosion.

  • Temperature Resistance:

In environments with extreme temperatures, the choice of materials with appropriate temperature resistance is critical to ensure the performance and durability of guide rollers. For high-temperature applications, materials such as heat-resistant steel alloys or specialized polymers that can withstand elevated temperatures are used. Conversely, in low-temperature environments, materials that remain flexible and maintain their mechanical properties at low temperatures, such as certain types of plastics or elastomers, are preferred. Selecting materials with suitable temperature resistance ensures that guide rollers can operate effectively and reliably in extreme temperature conditions.

  • Load-Bearing Capacity:

The choice of materials for guide rollers affects their load-bearing capacity, which is crucial for supporting the weight of the conveyed materials or objects. Materials with high strength and stiffness, such as steel or reinforced polymers, are commonly used to ensure sufficient load-bearing capacity. The material’s ability to withstand high loads without deformation or failure is essential for maintaining the stability and performance of guide rollers, particularly in heavy-duty applications or environments with significant material or object weights.

  • Noise and Vibration:

The choice of materials can influence the level of noise and vibration generated by guide rollers during operation. Softer materials with vibration-dampening properties, such as certain types of plastics or elastomers, can help reduce noise and vibration levels. These materials absorb and dissipate vibrations, resulting in quieter operation and reduced potential for noise-related issues or worker discomfort. Choosing materials that minimize noise and vibration is particularly important in environments where noise control is a priority, such as in indoor facilities or noise-sensitive areas.

  • Contamination and Cleanliness:

In environments where cleanliness and contamination control are critical, the choice of materials for guide rollers can play a significant role. Some materials, such as stainless steel or certain types of plastics, have smooth and non-porous surfaces that are resistant to contamination buildup. These materials are easier to clean and maintain, reducing the risk of particle generation or contamination transfer to the conveyed materials. Selecting materials that meet cleanliness requirements is essential in industries such as food processing, pharmaceuticals, or electronics manufacturing.

In summary, the choice of materials for guide rollers has a substantial impact on their performance in different environments. Factors such as wear resistance, corrosion resistance, temperature resistance, load-bearing capacity, noise and vibration levels, and contamination control should be considered when selecting materials for guide rollers. By choosing the appropriate materials for specific environmental conditions, guide rollers can deliver optimal performance, longevity, and reliability in a wide range of applications and industries.

guide roller

How do guide rollers contribute to the adaptability and versatility of conveyor systems in various settings?

Guide rollers play a critical role in enhancing the adaptability and versatility of conveyor systems in various settings. Here’s a detailed explanation of their contributions:

  • Flexible Path Routing:

Guide rollers enable flexible path routing, allowing conveyor systems to navigate complex layouts and adapt to different settings. By guiding the materials along specific paths, guide rollers facilitate precise material movement around obstacles, corners, inclines, or declines. This flexibility in path routing enables conveyor systems to be customized and configured to suit the specific requirements of different environments, layouts, or production processes. It allows for efficient space utilization and the integration of conveyors into existing infrastructure, making conveyor systems adaptable to a wide range of settings.

  • Multiple Conveyor Configurations:

Guide rollers enable the creation of multiple conveyor configurations, enhancing the versatility of conveyor systems. By combining straight sections, curves, merges, and diverges, conveyor systems can be configured to accommodate various material flow patterns and operational needs. Guide rollers provide the necessary support and alignment to ensure smooth transitions between different conveyor sections, allowing materials to be efficiently transferred, merged, sorted, or diverted. This versatility enables conveyor systems to be adapted for different processes, such as assembly lines, distribution centers, warehouses, or manufacturing facilities.

  • Adjustable Speed and Control:

Guide rollers contribute to the adaptability of conveyor systems by enabling adjustable speed and control. By adjusting the rotational speed of the guide rollers, the speed of material movement can be customized to match the specific requirements of different processes or settings. This flexibility in speed control allows conveyor systems to handle a wide range of materials, from delicate or fragile items that require gentle handling to heavy or bulky items that require faster conveyance. Adjustability in speed and control enhances the versatility of conveyor systems and ensures optimal material handling in various settings.

  • Modularity and Scalability:

Guide rollers facilitate the modularity and scalability of conveyor systems, making them adaptable to changing production needs or facility layouts. Conveyor systems can be designed with modular components, including guide rollers, that can be easily reconfigured, added, or removed as required. This modularity allows for efficient system expansion, modification, or reconfiguration without significant downtime or disruption. Guide rollers can be adjusted, replaced, or repositioned to accommodate changes in material types, sizes, or handling requirements. The scalability and modularity provided by guide rollers make conveyor systems versatile and adaptable to evolving operational needs.

  • Material Compatibility:

Guide rollers contribute to the adaptability of conveyor systems by accommodating a wide range of materials. They can be designed with different materials, surface textures, or coatings to suit specific material characteristics, such as size, shape, weight, or fragility. Guide rollers with specialized surfaces, such as non-slip coatings or friction-reducing materials, can be used for conveying items that require additional grip or gentle handling. This material compatibility enhances the versatility of conveyor systems, allowing them to handle diverse products or materials in various settings, from lightweight packages to heavy-duty items.

In summary, guide rollers significantly contribute to the adaptability and versatility of conveyor systems in various settings. They enable flexible path routing, support multiple conveyor configurations, allow for adjustable speed and control, facilitate modularity and scalability, and accommodate a wide range of materials. By leveraging the capabilities of guide rollers, conveyor systems can be tailored to meet the specific needs of different industries, processes, or layouts, making them adaptable and versatile in diverse settings.

guide roller

How does the design of a guide roller contribute to efficient material handling and movement?

The design of a guide roller plays a crucial role in facilitating efficient material handling and movement within industrial applications. Here’s a detailed explanation of how the design of a guide roller contributes to efficiency:

  • Surface Configuration:

The surface configuration of a guide roller is carefully designed to optimize material handling and movement. Depending on the specific application, guide rollers may have a smooth surface, grooves, or flanges. A smooth surface reduces friction and allows objects to glide smoothly along the roller. Grooves or flanges provide additional guidance and prevent objects from deviating or slipping off the roller. The surface configuration ensures proper alignment and prevents misalignment, leading to efficient material handling and movement.

  • Material Selection:

The choice of materials for guide rollers is critical in ensuring efficient material handling. Guide rollers are commonly made from durable materials such as metal or high-quality plastics. These materials offer excellent strength, wear resistance, and dimensional stability. The selected materials should also have low friction properties to minimize energy loss and reduce the potential for material damage or wear. By selecting appropriate materials, the design of guide rollers contributes to efficient and reliable material handling and movement.

  • Bearing System:

The design of guide rollers incorporates a bearing system that allows smooth rotation and minimizes friction. The bearings used in guide rollers are typically sealed or shielded to protect against contaminants and ensure long-lasting performance. The bearing system enables the guide roller to rotate freely, reducing resistance and facilitating efficient material movement. It also contributes to the longevity of the guide roller by reducing wear and minimizing the need for frequent maintenance.

  • Size and Diameter:

The size and diameter of a guide roller are carefully determined based on the specific application and load requirements. Guide rollers come in various sizes and diameters to accommodate different material handling needs. Larger guide rollers can handle heavier loads with greater stability, while smaller guide rollers are suitable for lighter objects or confined spaces. The appropriate sizing and diameter of the guide roller ensure optimal support, load distribution, and efficient movement of materials.

  • Installation and Positioning:

The design of guide rollers takes into account proper installation and positioning within the machinery or system. Guide rollers are strategically placed along the intended path to provide continuous guidance and support. The spacing between guide rollers is determined to prevent material deviation or excessive sagging. Proper installation and positioning of guide rollers ensure smooth and consistent material handling, minimizing the risk of jams, misalignment, or disruptions in the movement process.

In summary, the design of a guide roller significantly contributes to efficient material handling and movement. The surface configuration, material selection, bearing system, size and diameter, as well as the proper installation and positioning of guide rollers, all play a vital role. By providing precise guidance, minimizing friction, supporting loads, and ensuring proper alignment, the design of guide rollers optimizes material handling processes, enhances productivity, and promotes efficient movement within industrial applications.

China Good quality Bulk Material Guide Conveyor Roller with CE  China Good quality Bulk Material Guide Conveyor Roller with CE
editor by Dream 2024-05-16

China high quality High Quality Grain Transportation Mining Transport Guide Parts Spiral Conveyor Belt Roller

Product Description

China Manufacturer Heavy Duty Steel Rubber Coated HDPE Self Aligning Return Trough Carrier Conveyor Idler Roller Price for Mining Belt Conveyor System

The CHINAMFG range of conveyor rollers includes both steel and HDPE carry and return rollers. Also available are rubber disc impact and return rollers. The rollers and frames are manufactured to different standards or design according to your special working condition requirements with some innovative and maintenance saving designs. Our rollers are fitted with quality deep ball ZZ C3 bearings for maximum life. Belt Widths of our CHINAMFG rollers range from 400-2000. Larger sizes available on request.
Roller lifespan could be assured 30,000 to 50,000 hours under normal working condition and maintenance. 

 

Basic information
1 Brand: SPD
2 Life Time: 30000-50000hours
3 Production Capacity: as usual 800pieces/day.
4 Roller Diameter: 76-219mm.
5 Roller Length: 190mm to 3500mm.
6 Roller Pipe: Q235 carbon steel,high-precision ERW seam pipe with state-of roundness and straightness to ensure well-balanced rotation.
7 Shaft: Accurate shaft are made of cold-drawn bright round steel, which is superior in corrosion resistance and stiffness.We have strict control over tolerance of shaft dimension and surface quality.The service lifespan can be well secured and proloned.
8 Bearing: Ball bearing provided with C3 group of clearance, ZZ shield deep-groove to ensure a nice fit and off-set any expected temperature rise during operation by means of internal clearance OR according to your requirements. 
9 Bearing Brand: S KF,F AG,NSK, LYC,HRB, or according to your requirements.
10 Seals: The babyrinth seal structure is of non-contact type, and durable and has less rotation-resistance and long life-span as to be of optimum structure, particularly for a long-distance and large capacity conveyor for bulk material. It is approved from the testing of national authoritative organization that Seal employed is of dustproof and waterproof type, whose performance proved to be satisfactory and has by a long way exceeded the GB and JIS standard after our repeated research and development.Factory high quality greased full for life.
11 Color: black, red, blue, yellow available , or according to your requirement.

 

Technical Parameters
Standard Diameter Length scope ( mm) Bearings Type
(Min~Max)
Idler’s Shell Wall Thickness
mm Inch
63.5 2 1/2 150~3500 204 3.0mm~3.75mm
76 3 150~3500 204 205 3.0mm~4.0mm
89 3 1/3 150~3500 204 205 3.0mm~4.0mm
102 4 150~3500 3.5mm~4.0mm
108 4 1/4 150~3500 3.5mm~4.0mm
114 4 1/2 150~3500 3.5mm~4.5mm
127 5 150~3500 3.5mm~4.5mm
133 5 1/4 150~3500 306 3.5mm~4.5mm
140 5 1/2 150~3500 306 3.5mm~4.5mm
152 6 150~3500 4.0mm~4.5mm
159 6 1/4 150~3500 4.0mm~4.5mm
165 6 1/2 150~3500 308 4.5mm~6.0mm
177.8 7 150~3500 309 4.5mm~6.0mm
190.7 7 1/2 150~3500 309 4.5mm~6.0mm
194 7 5/8 150~3500 310 4.5mm~6.0mm
219 8 5/8 150~3500 4.5mm~6.0mm

Main features:
1, The bearing housing and steel tube are assembled and welded with a concentric automatic, welding machine.
2, Cutting of the steel tube and bearing is performed with the use of a digital auto device/machine/equipment.
3, Fabrication of the roller is affected by an auto device and 100% tested for its concentricity.
4, Roller and supporting components/materials are manufactured to ISO/BS/JIS/DIN//CEMA/Australia, etc. standard. 

Adavantage:
1, Over 30 years since 1986 for design, engineer, install, innovate and maintain belt conveyor equipment, components and services.
2, Germany BEUMER GROUP  advanced technology cooperation.  
3, Certified by SGS, BV, and ISO9001:2008 quality management system
4, Passed issued by national administration of work safety mine safety standard center.
5, High-quality raw material selection made rollers working lifetime 50000 hours on average.
6, Long Life-Span & Energy Saving: resistance of roller rotating is 30% lower than that of national standards, which can save 40% power consumption per hour.

Industry products research and manufacture. Over 70 designers are responsible for the research and development of professional port handling systems, vessels, steel structures, and modular house businesses. Port handling system mainly involves belt and pipe conveyor systems, stackers, rollers, pulleys and other parts. Shipping products include types of tugboats, product oil tankers, oil spill disposal ships and other offshore oilfield service ships; marine leveling barges, dredgers, and other engineering vessels. We have also designed and rebuilt the first offshore mariculture platform in China, several recreational platforms and other marine fishery equipment.

FAQ:
1.Q: Your bearing type and brand usually use?
 A: Large clearance C3 ZZ type deep ball bearing with LYC, S KF, F AG, NSK, etc. According to customer’s requirements.
2.Q: How is your Payment Term?
A: T/T or L/C. Another payment term we can also discuss.
3.Q: Can you customize it?
A: We support customization according to your request.
4.Q: What’s the MOQ?
A: 1 piece.
5.Q: What’s the production capacity of your idler and belt conveyor? 
A: Idlers 200,000 pcs/year.
6.Q: What’s your roller’s lifespan?
A: Our rollers have a long lifespan with good performance and usually make sure 30000 to 50000 hours under the normal site and operation.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Material: HDPE/Rubber/Carbon Steel/Steel
Application: Chemical Industry, Grain Transportation, Mining Transport, Power Plant
Structure: Ordinary Roller
Bearing Type: Double Sealed Bearing
Type: Grooved Conveyor Idler
Product Name: Belt Conveyor Idler Roller
Samples:
US$ 9.9/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

guide roller

How does the choice of materials impact the performance of guide rollers in different environments?

The choice of materials for guide rollers significantly impacts their performance in different environments. Here’s a detailed explanation of how material selection affects the performance of guide rollers:

  • Wear Resistance:

Guide rollers are subjected to continuous contact and friction with the conveyed materials or objects. The choice of materials with high wear resistance is crucial to ensure the longevity and performance of guide rollers. Materials such as steel, stainless steel, or polyurethane are commonly used for guide rollers due to their excellent wear resistance properties. These materials can withstand the abrasion and wear caused by repetitive contact with the conveyed materials, resulting in extended service life and reliable performance in demanding environments.

  • Corrosion Resistance:

In environments where guide rollers are exposed to moisture, chemicals, or corrosive substances, selecting materials with high corrosion resistance is essential. Stainless steel is a popular choice for guide rollers in corrosive environments due to its resistance to rust and corrosion. Stainless steel guide rollers can withstand the effects of water, chemicals, and harsh substances, ensuring long-term performance and preventing premature failure or degradation due to corrosion.

  • Temperature Resistance:

In environments with extreme temperatures, the choice of materials with appropriate temperature resistance is critical to ensure the performance and durability of guide rollers. For high-temperature applications, materials such as heat-resistant steel alloys or specialized polymers that can withstand elevated temperatures are used. Conversely, in low-temperature environments, materials that remain flexible and maintain their mechanical properties at low temperatures, such as certain types of plastics or elastomers, are preferred. Selecting materials with suitable temperature resistance ensures that guide rollers can operate effectively and reliably in extreme temperature conditions.

  • Load-Bearing Capacity:

The choice of materials for guide rollers affects their load-bearing capacity, which is crucial for supporting the weight of the conveyed materials or objects. Materials with high strength and stiffness, such as steel or reinforced polymers, are commonly used to ensure sufficient load-bearing capacity. The material’s ability to withstand high loads without deformation or failure is essential for maintaining the stability and performance of guide rollers, particularly in heavy-duty applications or environments with significant material or object weights.

  • Noise and Vibration:

The choice of materials can influence the level of noise and vibration generated by guide rollers during operation. Softer materials with vibration-dampening properties, such as certain types of plastics or elastomers, can help reduce noise and vibration levels. These materials absorb and dissipate vibrations, resulting in quieter operation and reduced potential for noise-related issues or worker discomfort. Choosing materials that minimize noise and vibration is particularly important in environments where noise control is a priority, such as in indoor facilities or noise-sensitive areas.

  • Contamination and Cleanliness:

In environments where cleanliness and contamination control are critical, the choice of materials for guide rollers can play a significant role. Some materials, such as stainless steel or certain types of plastics, have smooth and non-porous surfaces that are resistant to contamination buildup. These materials are easier to clean and maintain, reducing the risk of particle generation or contamination transfer to the conveyed materials. Selecting materials that meet cleanliness requirements is essential in industries such as food processing, pharmaceuticals, or electronics manufacturing.

In summary, the choice of materials for guide rollers has a substantial impact on their performance in different environments. Factors such as wear resistance, corrosion resistance, temperature resistance, load-bearing capacity, noise and vibration levels, and contamination control should be considered when selecting materials for guide rollers. By choosing the appropriate materials for specific environmental conditions, guide rollers can deliver optimal performance, longevity, and reliability in a wide range of applications and industries.

guide roller

How do guide rollers contribute to the adaptability and versatility of conveyor systems in various settings?

Guide rollers play a critical role in enhancing the adaptability and versatility of conveyor systems in various settings. Here’s a detailed explanation of their contributions:

  • Flexible Path Routing:

Guide rollers enable flexible path routing, allowing conveyor systems to navigate complex layouts and adapt to different settings. By guiding the materials along specific paths, guide rollers facilitate precise material movement around obstacles, corners, inclines, or declines. This flexibility in path routing enables conveyor systems to be customized and configured to suit the specific requirements of different environments, layouts, or production processes. It allows for efficient space utilization and the integration of conveyors into existing infrastructure, making conveyor systems adaptable to a wide range of settings.

  • Multiple Conveyor Configurations:

Guide rollers enable the creation of multiple conveyor configurations, enhancing the versatility of conveyor systems. By combining straight sections, curves, merges, and diverges, conveyor systems can be configured to accommodate various material flow patterns and operational needs. Guide rollers provide the necessary support and alignment to ensure smooth transitions between different conveyor sections, allowing materials to be efficiently transferred, merged, sorted, or diverted. This versatility enables conveyor systems to be adapted for different processes, such as assembly lines, distribution centers, warehouses, or manufacturing facilities.

  • Adjustable Speed and Control:

Guide rollers contribute to the adaptability of conveyor systems by enabling adjustable speed and control. By adjusting the rotational speed of the guide rollers, the speed of material movement can be customized to match the specific requirements of different processes or settings. This flexibility in speed control allows conveyor systems to handle a wide range of materials, from delicate or fragile items that require gentle handling to heavy or bulky items that require faster conveyance. Adjustability in speed and control enhances the versatility of conveyor systems and ensures optimal material handling in various settings.

  • Modularity and Scalability:

Guide rollers facilitate the modularity and scalability of conveyor systems, making them adaptable to changing production needs or facility layouts. Conveyor systems can be designed with modular components, including guide rollers, that can be easily reconfigured, added, or removed as required. This modularity allows for efficient system expansion, modification, or reconfiguration without significant downtime or disruption. Guide rollers can be adjusted, replaced, or repositioned to accommodate changes in material types, sizes, or handling requirements. The scalability and modularity provided by guide rollers make conveyor systems versatile and adaptable to evolving operational needs.

  • Material Compatibility:

Guide rollers contribute to the adaptability of conveyor systems by accommodating a wide range of materials. They can be designed with different materials, surface textures, or coatings to suit specific material characteristics, such as size, shape, weight, or fragility. Guide rollers with specialized surfaces, such as non-slip coatings or friction-reducing materials, can be used for conveying items that require additional grip or gentle handling. This material compatibility enhances the versatility of conveyor systems, allowing them to handle diverse products or materials in various settings, from lightweight packages to heavy-duty items.

In summary, guide rollers significantly contribute to the adaptability and versatility of conveyor systems in various settings. They enable flexible path routing, support multiple conveyor configurations, allow for adjustable speed and control, facilitate modularity and scalability, and accommodate a wide range of materials. By leveraging the capabilities of guide rollers, conveyor systems can be tailored to meet the specific needs of different industries, processes, or layouts, making them adaptable and versatile in diverse settings.

guide roller

Can you explain the primary functions and role of a guide roller in machinery?

A guide roller plays crucial functions and holds a significant role in machinery. Here’s a detailed explanation of the primary functions and role of a guide roller:

  • Guidance and Alignment:

One of the primary functions of a guide roller is to provide guidance and alignment for moving components within machinery. It ensures that objects or materials follow a predetermined path or track, preventing them from deviating or straying off course. The guide roller’s smooth or grooved surface, along with its rotational movement, helps maintain proper alignment and prevents misalignment or unwanted movements. By guiding the motion of objects, the guide roller ensures accurate positioning and efficient operation of the machinery.

  • Support and Load Distribution:

A guide roller serves as a support mechanism, carrying the weight of objects or loads within the machinery. It helps distribute the load evenly, preventing excessive stress or strain on specific components. By providing support and load distribution, the guide roller enhances the stability and overall performance of the machinery. It reduces the risk of component failures, improves operational efficiency, and extends the lifespan of the machinery.

  • Friction Reduction:

Guide rollers also play a role in reducing friction within machinery. As objects move along the guide roller’s surface, the roller’s design minimizes contact friction between the object and the machinery’s components. This friction reduction helps to conserve energy and prevent excessive wear and tear on both the objects being transported and the machinery itself. By reducing friction, guide rollers contribute to smoother operation, lower maintenance requirements, and improved overall efficiency.

  • Prevention of Damage and Misalignment:

The presence of guide rollers helps prevent damage and misalignment of objects or materials within machinery. By providing a designated path or track, guide rollers ensure that moving components stay in the intended position and avoid colliding with other parts of the machinery. This prevents potential damage to the objects being transported and the machinery itself. Additionally, guide rollers help prevent misalignment, which could lead to operational issues, decreased performance, and increased risk of accidents or mechanical failures.

  • Noise and Vibration Reduction:

Guide rollers contribute to noise reduction and vibration damping within machinery. The rotational movement of the guide roller absorbs and dissipates vibrations generated during operation, minimizing the transmission of vibrations to other parts of the machinery. This reduction in vibration helps to maintain a quieter working environment, reduces the risk of noise-related health issues for operators, and improves overall user comfort.

In summary, the primary functions and role of a guide roller in machinery include providing guidance and alignment for moving components, offering support and load distribution, reducing friction, preventing damage and misalignment, and contributing to noise and vibration reduction. By fulfilling these functions, guide rollers enhance the overall performance, reliability, and longevity of machinery in various industrial applications.

China high quality High Quality Grain Transportation Mining Transport Guide Parts Spiral Conveyor Belt Roller  China high quality High Quality Grain Transportation Mining Transport Guide Parts Spiral Conveyor Belt Roller
editor by Dream 2024-05-16

China best Cema Standard Mining Industry Steel Conveyor Belt Roller Guide Roller

Product Description

Yuanxin Machinery conveyor rollers idlers includes both steel and HDPE carry and return rollers, rubber disc impact and return rollers. The rollers and frames are produced to different standards or designs according to your special working condition requirements with innovative and maintenance saving designs. Our rollers are equipped with quality deep ball ZZ C3 bearings for maximum life. Our rollers are suitable for belt widths 400-2000. Larger sizes also available on your special requirements. Our roller service life can be 30,000 to 50,000 hours under normal working condition and maintenance.

Product Parameters

Basic information
1 Brand LONGBAOYUAN
2 Roller Diameter 63.5 to 219mm.
3 Roller Length 190 to 3500mm.
4 Roller Pipe: Q235 high-precision ERW seam carbon steel pipe with roundness and straightness to ensure well-balanced rotation.
5 Shaft Accurate shaft are made of cold-drawn bright round steel, which is superior in corrosion resistance and stiffness.We have strict control over tolerance of shaft dimension and surface quality.The service lifespan can be well secured and proloned.
6 Bearing: Ball bearing provided with C3 group of clearance, ZZ shield deep-groove to ensure a nice fit and off-set any expected temperature rise during operation by means of internal clearance OR according to your requirements.
7 Bearing Brand S KF,F AG,NSK, LYC,HRB, or according to your requirements.
8 Seals Optimum structure with non-contact type, durable, less rotation-resistance and long life-span feautres, particularly for a long-distance and large capacity conveyor for bulk material. It is approved by national authoritative organization that seal is dustproof and waterproof, its performance proved to be satisfactory and has a long way exceeded the GB and JIS standard after our repeated research and development.
9 Color Black, green, red, blue, yellow and customized colors are available
10 Life Time 30000-50000hours
11 Production 800-1000pcs/day.

 

Conveyor Roller Idler Parameters

 

Standard Diameter Length scope ( mm) Bearings Type Idler’s Shell Wall Thickness
mm Inch (Min~Max)
63.5 2 1/2 150~3500 204 3.0mm~3.75mm
76 3 150~3500 204 205 3.0mm~4.0mm
89 3 1/3 150~3500 204 205 3.0mm~4.0mm
102 4 150~3500 3.5mm~4.0mm
108 4 1/4 150~3500 3.5mm~4.0mm
114 4 1/2 150~3500 3.5mm~4.5mm
127 5 150~3500 3.5mm~4.5mm
133 5 1/4 150~3500 306 3.5mm~4.5mm
140 5 1/2 150~3500 306 3.5mm~4.5mm
152 6 150~3500 4.0mm~4.5mm
159 6 1/4 150~3500 4.0mm~4.5mm
165 6 1/2 150~3500 308 4.5mm~6.0mm
177.8 7 150~3500 309 4.5mm~6.0mm
190.7 7 1/2 150~3500 309 4.5mm~6.0mm
194 7 5/8 150~3500 310 4.5mm~6.0mm
219 8 5/8 150~3500 4.5mm~6.0mm

 

Our Advantages

ZheJiang Yuanxin Conveyor Machinery Co., Ltd
1, Over 20 years experience on design, producing, install, innovate and maintain belt conveyor equipment, components and services.
2, Certified by SGS, BV and ISO9001:2008
3, Mine products safety mark certificate issued by national administration of work safety mine safety standard center.
4, High-quality raw material selection guarantee rollers working lifetime 3-50000 hours.
5, Energy Saving: roller rotating resistance is 30% lower than national standards, which can save 40% power consumption per hour.
6. Each roller would be through strict inspection and test to ensure every out coming roller are of true high quality.
7. Our return/carrier/trough roller has high precision structure, composing as many as 9 seal parts which ensure the roller good capability of water and dust resistance. With rubber or steel seals, multi-labyrinth seals.
8. The bearing housing and tube is full welded to ensure the well contact of the whole roller. Grease is permanent lubricant.
9. Roller surface could be painted any color as per customer request.
10. Material: normally Q235 tube (specially for conveyor roller), A3 cold-drawn shaft (Could be of very high precision to meed different customer requirement.)
Welcome to contact us at any time for conveyor roller/idler. We are professional and excellent in technology and service.
We know how to make our converyor roller to move your business!

Applications

 

Production Workshop

 

Packaging & Shipping

 

 

Company Profile

You May Also Need:

 

 

 

FAQ

Q1. Can I have a sample order for conveyor roller
Yes, we welcome sample order to test and check quality.
Q2. What about the lead time?
1) 2–3 days for sample
2) 20–30 days for mass production. If urgent,we have green channel.
Q3. Do you have any MOQ limit for conveyor roller order?
Low MOQ, 1pc for sample checking is available
Q4. Is it OK to print my logo on conveyor roller product?
Yes. Please inform us your logo or design before mass production
Q5. How to guarantee your quality?
We are 1 of the top suppliers of International famous mining company over years. Excellent quality is well accepted.
Please contact us for more details.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Material: Steel
Application: Chemical Industry, Grain Transportation, Mining Transport, Power Plant, Quarrying, Cement and Grain Depot Transport
Structure: Variable Groove Angle Roller
Samples:
US$ 0/Piece
1 Piece(Min.Order)

|

Order Sample

Free conveyor roller idler sample available
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

guide roller

Can you explain the impact of guide rollers on the overall efficiency of material handling systems?

Guide rollers play a significant role in the overall efficiency of material handling systems. Here’s a detailed explanation of their impact:

  • Precise Material Movement:

Guide rollers are designed to guide and support the movement of materials along a desired path. By providing a stable and controlled surface for material conveyance, guide rollers ensure precise movement and positioning. This precision minimizes the risk of material deviation, misalignment, or collisions, allowing for smooth and efficient material flow within the system. Accurate material movement enables efficient processing, reduces downtime, and enhances overall productivity.

  • Reduced Friction and Energy Consumption:

Well-designed guide rollers with low-friction surfaces can significantly reduce the amount of energy required for material handling. By minimizing friction between the guide rollers and the conveyed materials, less power is needed to move the materials along the desired path. This reduction in energy consumption leads to improved energy efficiency and lower operational costs. Additionally, reduced friction helps extend the service life of the guide rollers by minimizing wear and heat generation.

  • Enhanced System Throughput:

Efficient guide rollers contribute to increased system throughput in material handling operations. By facilitating smooth and consistent material flow, guide rollers help eliminate bottlenecks and optimize the overall speed and capacity of the system. When materials can be conveyed quickly and reliably, the system can handle higher volumes of materials, leading to improved productivity and throughput. Guide rollers also enable efficient sorting, merging, or diverting of materials, further enhancing system throughput and flexibility.

  • Improved Product Quality:

The use of guide rollers in material handling systems helps maintain product quality and integrity. By guiding materials along a predetermined path, guide rollers prevent material damage, deformation, or contamination that can occur due to uncontrolled movement or collisions. This results in better product quality and reduces the risk of rework or product rejection. Guide rollers also ensure consistent material positioning, which is crucial for precision operations such as assembly, packaging, or quality control.

  • Minimized Downtime and Maintenance:

Efficient guide rollers can contribute to reduced downtime and maintenance requirements in material handling systems. When guide rollers are properly designed, installed, and maintained, they operate smoothly and reliably, minimizing the risk of failures or disruptions. High-quality guide rollers with durable materials and components can withstand the demands of continuous operation and heavy loads, reducing the need for frequent replacements or repairs. This leads to increased system uptime, reduced maintenance costs, and improved overall equipment effectiveness (OEE).

  • Worker Safety and Ergonomics:

Guide rollers contribute to a safer and more ergonomic working environment in material handling systems. By guiding materials along a predetermined path, guide rollers help prevent material spillage, which can create tripping hazards or pose risks to workers. Additionally, guide rollers facilitate smooth and controlled material movement, reducing the physical strain on workers during manual material handling tasks. This promotes a safer and more comfortable workplace, minimizing the risk of injuries and improving overall worker productivity.

In summary, guide rollers have a significant impact on the overall efficiency of material handling systems. They enable precise material movement, reduce friction and energy consumption, enhance system throughput, improve product quality, minimize downtime and maintenance, and contribute to worker safety and ergonomics. By selecting and maintaining high-quality guide rollers, material handling operations can achieve optimal efficiency, productivity, and cost-effectiveness.

guide roller

Are there innovations or advancements in guide roller technology that have emerged recently?

Yes, there have been several recent innovations and advancements in guide roller technology. Here are some notable developments:

  • High-Performance Materials:

Recent advancements in materials science have led to the development of high-performance materials for guide rollers. These materials offer improved strength, durability, and wear resistance, allowing guide rollers to withstand heavy loads and harsh operating conditions. For example, composite materials combining polymers and fibers offer excellent mechanical properties while being lightweight. Additionally, advancements in surface coatings, such as ceramic or diamond-like carbon (DLC) coatings, provide enhanced friction reduction, corrosion resistance, and longevity.

  • Precision Design and Manufacturing:

Guide rollers are now being designed and manufactured with a greater emphasis on precision. Advanced manufacturing techniques, such as computer numerical control (CNC) machining and 3D printing, enable the production of guide rollers with complex geometries, tight tolerances, and optimized performance characteristics. This precision design and manufacturing result in guide rollers that offer improved alignment, reduced vibration, and enhanced overall performance.

  • Integrated Sensors and Monitoring:

Advancements in sensor technology have made it possible to integrate sensors directly into guide rollers. These sensors can monitor various parameters such as temperature, vibration, or load, providing real-time feedback on the condition and performance of the guide rollers. This data can be used for predictive maintenance, allowing for proactive identification of potential issues and timely intervention to prevent failures or downtime. Integrated sensors and monitoring systems contribute to improved reliability, efficiency, and maintenance practices in material handling systems.

  • Smart Guide Rollers:

Smart guide rollers leverage emerging technologies, such as Internet of Things (IoT) and artificial intelligence (AI), to enhance their functionality and performance. These guide rollers can communicate with other components or systems within the material handling setup, enabling real-time optimization, automation, and control. For example, smart guide rollers can adjust their position or speed dynamically based on the specific material being handled or the desired process parameters. This adaptability and intelligence lead to improved efficiency, flexibility, and responsiveness in material handling operations.

  • Energy Efficiency:

In response to the growing emphasis on sustainability and energy conservation, guide roller technology has seen advancements aimed at improving energy efficiency. This includes the development of low-friction materials, optimized roller designs, and innovative bearing systems that minimize power consumption and reduce frictional losses. By reducing energy requirements, these advancements contribute to lower operational costs and a reduced environmental footprint.

In summary, recent innovations and advancements in guide roller technology encompass high-performance materials, precision design and manufacturing, integrated sensors and monitoring, smart capabilities, and energy efficiency. These advancements enhance the durability, performance, reliability, and sustainability of guide rollers, making them more effective and versatile in a wide range of material handling applications.

guide roller

What are the different types and configurations of guide rollers available in the market?

In the market, there are various types and configurations of guide rollers available to cater to different industrial applications. Here’s a detailed explanation of the different types and configurations:

  • Plain Guide Rollers:

Plain guide rollers, also known as cylindrical guide rollers, have a smooth surface without any grooves or flanges. They are commonly used when minimal guidance is required, and the primary function is to support and facilitate smooth movement. Plain guide rollers are suitable for applications where objects or materials need to be guided without significant lateral forces or directional control.

  • Flanged Guide Rollers:

Flanged guide rollers have built-in flanges on one or both sides of the roller. The flanges act as barriers to prevent objects from deviating or slipping off the roller. They provide enhanced lateral guidance and help maintain proper alignment during material handling. Flanged guide rollers are commonly used in conveyor systems, material transport applications, and scenarios where precise tracking and alignment are critical.

  • Grooved Guide Rollers:

Grooved guide rollers have one or more grooves along their circumference. These grooves provide additional guidance and increase the contact area between the roller and the object being transported. The grooves help prevent lateral movement and improve the overall stability of material handling. Grooved guide rollers are commonly used in applications that involve curved tracks, cornering, or situations where objects may be subjected to lateral forces.

  • Tapered Guide Rollers:

Tapered guide rollers have a tapered or conical shape, with a larger diameter at one end and a smaller diameter at the other. The tapered design allows for smooth transitions and alignment when objects move from one roller to another. Tapered guide rollers are often used in conveyor systems, sorting processes, and applications where objects need to be guided through changing directions or different stages of material handling.

  • Cam Follower Guide Rollers:

Cam follower guide rollers have a specialized design with a stud or shaft attached to the roller. They are used in applications where the guide roller needs to follow a specific cam profile or track. The cam follower design allows for precise and controlled movement along the cam surface, making them suitable for applications such as automation, indexing mechanisms, and machinery that require synchronized motion.

  • Adjustable Guide Rollers:

Adjustable guide rollers are designed with a mechanism that allows for easy adjustment of the roller’s position, height, or angle. They offer flexibility in aligning and positioning the guide rollers to accommodate different material handling requirements or changing operational conditions. Adjustable guide rollers are commonly used in conveyor systems, assembly lines, and applications where frequent adjustments or customization are necessary.

It’s important to note that these are general categories, and there can be variations and combinations of different features and configurations available in the market. The choice of guide roller type and configuration depends on factors such as the specific application, material handling needs, load requirements, and environmental conditions.

In summary, the market offers different types and configurations of guide rollers, including plain guide rollers, flanged guide rollers, grooved guide rollers, tapered guide rollers, cam follower guide rollers, and adjustable guide rollers. Each type and configuration caters to specific material handling needs and provides varying levels of guidance, support, and control.

China best Cema Standard Mining Industry Steel Conveyor Belt Roller Guide Roller  China best Cema Standard Mining Industry Steel Conveyor Belt Roller Guide Roller
editor by Dream 2024-05-15

China Custom Paper Mill Culture Paper Machine Paper Machine Blind Drilling Belt Conveyor Guide Roller Roller

Product Description

specific granite stone roller: it is the first-class granite in  the world, the granite used in this stone roller is a pure natural magma
formed by a volcanic eruption. This kind of stone has high density, anti-magnetic, anti-vibration, and high-pressure resistance; the
line pressure can reach 350KN/m; each cubic meter is 800 kg heavier than ordinary granite; the color is blue-black, high acid and
alkali resistance, no metal, and uniform particles, never fall off; can increase pressure on wet paper, good dehydration, easy to lead
paper, easy to peel, easy to dry, not easy to break the paper. It can produce high-quality paper products with high tensile strength
and high surface smoothness, which are favored by users all over the world.

 

Packaging & Shipping

FAQ

 

Q: Are you a manufacturer?
A: Yes, we can provide you with professional production and processing.

Q: How to install the machine?
A: We can help the installation by video, email, picture. For large projects, we can arrange for our workers to help you install in your country.

Q: How do you package the product?
A: Usually as export standard packing or as your request.

Q: What is your available shipping port?
A: HangZhou Port, ZheJiang Port and so on.

Q: Can it be customized?
A: Yes, according to the detailed drawings you provide.

 

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Have
Warranty: One Year
Certification: ISO 9001:2000, CE
Surface Treatment: Polishing
Manufacturing Process: Cnc Milling
Material: Wulong Granite
Customization:
Available

|

guide roller

What maintenance practices are recommended for guide rollers to ensure optimal functionality?

Maintaining guide rollers is essential to ensure their optimal functionality and longevity. Here are some recommended maintenance practices for guide rollers:

  • Regular Inspection:

Perform regular visual inspections of the guide rollers to check for any signs of damage, wear, or misalignment. Look for cracks, dents, or excessive wear on the roller surface. Inspect the mounting brackets, bearings, and axles for any looseness or misalignment. Early detection of issues can help prevent further damage and ensure the guide rollers function properly.

  • Cleaning:

Keep the guide rollers clean by removing any dirt, debris, or material buildup. Use a soft brush or compressed air to gently clean the roller surfaces and remove any contaminants that may affect their performance. For stubborn residue, mild cleaning agents can be used, following the manufacturer’s recommendations. Clean guide rollers help maintain smooth operation and prevent potential issues caused by contamination.

  • Lubrication:

Proper lubrication is crucial for the smooth operation and longevity of guide rollers. Follow the manufacturer’s guidelines regarding the type and frequency of lubrication required. Apply lubricants to the bearings, axles, or other moving parts as recommended. Adequate lubrication reduces friction, minimizes wear, and helps prevent premature failure or damage to the guide rollers.

  • Tension Adjustment:

If the guide rollers are part of a system where tension adjustment is necessary, regularly check and adjust the tension settings as required. Ensure that the tension is within the recommended range to prevent excessive stress on the guide rollers or the conveyed materials. Proper tension adjustment helps maintain accurate alignment and prevents issues such as material slipping or misalignment.

  • Replacement of Worn Components:

Monitor the condition of the guide roller components, such as bearings, axles, or mounting brackets, and replace any worn or damaged parts promptly. Worn bearings can cause increased friction, leading to reduced performance and potential damage to the guide rollers. Damaged axles or mounting brackets can affect the stability and alignment of the guide rollers. Regularly inspect and replace any worn or damaged components to ensure optimal functionality.

  • Alignment and Calibration:

Periodically check and adjust the alignment of the guide rollers to ensure they are properly positioned for accurate material guidance. Misaligned guide rollers can cause material deviation, tracking issues, or increased wear. Additionally, if the guide rollers are part of a system with sensors or automated controls, calibrate the system as per the manufacturer’s instructions to maintain accurate positioning and control.

  • Training and Safety:

Ensure that personnel responsible for operating or maintaining equipment with guide rollers receive appropriate training. Proper training can help operators understand the maintenance requirements, safety protocols, and best practices for guide roller operation. Promote a safety culture where operators are encouraged to report any abnormalities or concerns related to the guide rollers promptly.

By following these recommended maintenance practices, guide rollers can maintain optimal functionality, extend their service life, and contribute to efficient and reliable material handling and transport.

guide roller

What are the signs that indicate a need for guide roller replacement or maintenance, and how can they be diagnosed?

Proper maintenance and timely replacement of guide rollers are crucial for the efficient and safe operation of conveyor systems. Here are some signs that indicate a need for guide roller replacement or maintenance, along with diagnostic methods:

  • Excessive Noise:

If guide rollers produce excessive noise during operation, it may indicate a problem. Unusual grinding, squeaking, or rattling noises can be signs of worn-out or damaged guide rollers. To diagnose the issue, the conveyor system should be observed and listened to during operation. If the noise persists even after cleaning or lubricating the guide rollers, it may be necessary to inspect them more closely for wear, misalignment, or other issues.

  • Uneven or Erratic Material Movement:

If materials on the conveyor system exhibit uneven or erratic movement, it could be a sign of guide roller problems. Misaligned or worn-out guide rollers may cause materials to veer off course, tilt, or become stuck. Visual observation of material movement along the conveyor path can help diagnose this issue. If materials consistently deviate from the intended path or exhibit inconsistent movement, it may be necessary to inspect the guide rollers for proper alignment, damage, or wear.

  • Excessive Vibration:

Excessive vibration in the conveyor system can indicate problems with guide rollers. Misaligned or damaged guide rollers can cause increased vibration, which can affect the overall stability and performance of the system. To diagnose this issue, the conveyor system should be observed during operation. Excessive vibration can be visually detected or felt by touching the conveyor frame or components. If excessive vibration is present, the guide rollers should be inspected for alignment issues, damage, or excessive wear.

  • Uneven Wear Patterns:

Inspecting the wear patterns on guide rollers can provide valuable information about their condition. Uneven wear patterns, such as flat spots, grooves, or excessive wear on specific areas, may indicate misalignment, improper loading, or damage to the guide rollers. Visual inspection of the guide rollers and comparing the wear patterns across multiple rollers can help diagnose this issue. If significant uneven wear is observed, it may be necessary to replace the affected guide rollers and investigate the underlying causes.

  • Physical Damage:

Physical damage to guide rollers, such as cracks, breaks, or deformations, is a clear indication that maintenance or replacement is needed. Visual inspection of the guide rollers should be conducted regularly to identify any visible signs of damage. If damaged guide rollers are detected, they should be replaced promptly to prevent further deterioration and potential system failures.

  • Increased Friction or Resistance:

If there is a noticeable increase in friction or resistance during the movement of the conveyor system, it may indicate problems with the guide rollers. Excessive friction can lead to increased power consumption, reduced efficiency, and accelerated wear of other components. To diagnose this issue, the conveyor system should be observed for any signs of dragging, sticking, or increased effort required for material movement. If increased friction or resistance is present, the guide rollers should be inspected for proper lubrication, cleanliness, or signs of damage.

In summary, several signs indicate a need for guide roller replacement or maintenance, including excessive noise, uneven or erratic material movement, excessive vibration, uneven wear patterns, physical damage, and increased friction or resistance. These signs can be diagnosed through visual observation, listening to the conveyor system during operation, inspecting wear patterns, checking for physical damage, and monitoring the overall performance and behavior of the system. Regular inspection and proactive maintenance of guide rollers are essential to ensure optimal conveyor system performance and prevent potential safety hazards.

guide roller

Can you describe the factors to consider when selecting guide rollers for specific applications?

When selecting guide rollers for specific applications, several factors need to be considered to ensure optimal performance and compatibility. Here’s a detailed explanation of the factors to consider:

  • Load Capacity:

The load capacity is a crucial factor to consider when selecting guide rollers. It refers to the maximum weight that the guide roller can support without compromising its performance or longevity. It’s important to assess the expected load requirements of the application, including both static and dynamic loads. Selecting guide rollers with an appropriate load capacity ensures that they can effectively support the materials or objects being handled, preventing premature wear, deformation, or failure.

  • Speed and Acceleration:

The speed and acceleration at which the guide rollers will operate are essential considerations. Higher speeds and accelerations can place increased stress on the guide rollers, requiring a design that can handle the resulting forces and vibrations. It’s important to choose guide rollers that are specifically designed for the anticipated speed and acceleration of the application to ensure smooth movement, minimize wear, and prevent issues such as excessive noise or instability.

  • Environmental Conditions:

The environmental conditions in which the guide rollers will be used play a significant role in their selection. Factors such as temperature, humidity, dust, chemicals, and exposure to corrosive substances can affect the performance and lifespan of guide rollers. It’s crucial to choose guide rollers that are made from materials and coatings suitable for the specific environmental conditions to ensure durability, corrosion resistance, and reliable operation over time.

  • Guidance and Alignment Requirements:

The level of guidance and alignment required by the application is an important consideration. Some applications may require precise tracking and alignment, while others may need minimal guidance. The design and configuration of the guide rollers, such as flanges, grooves, or tapered shapes, should be selected based on the specific guidance and alignment needs of the materials or objects being handled. Choosing guide rollers that provide the necessary level of guidance ensures accurate movement, prevents misalignment, and minimizes the risk of material damage or operational disruptions.

  • Mounting and Integration:

The mounting and integration of guide rollers within the application should be considered during the selection process. This includes factors such as the available space for mounting, the type of mounting arrangement required, and compatibility with existing machinery or systems. Guide rollers should be selected with appropriate dimensions, shaft configurations, and mounting options to ensure easy installation and seamless integration into the application.

  • Maintenance and Serviceability:

Considering the maintenance and serviceability aspects is important when selecting guide rollers. Factors such as accessibility for lubrication, ease of cleaning, and the availability of replacement parts should be considered. Guide rollers that are designed for easy maintenance and serviceability can help minimize downtime, extend the lifespan of the rollers, and reduce overall maintenance costs.

By considering these factors, including load capacity, speed and acceleration, environmental conditions, guidance and alignment requirements, mounting and integration, and maintenance and serviceability, the selection of guide rollers can be optimized for specific applications. This ensures that the chosen guide rollers are well-suited to handle the demands of the application, resulting in efficient material handling, reliable operation, and extended service life.

China Custom Paper Mill Culture Paper Machine Paper Machine Blind Drilling Belt Conveyor Guide Roller Roller  China Custom Paper Mill Culture Paper Machine Paper Machine Blind Drilling Belt Conveyor Guide Roller Roller
editor by Dream 2024-05-15

China manufacturer High Performance Eco Friendly Factory Textile Coil Winding Machine Ceramic Wire Guide Roller

Product Description

High Performance Eco Friendly Factory Textile Coil Winding Machine Ceramic Wire Xihu (West Lake) Dis. Roller
 

Product Description:

1. In the wire and cable industry, ceramics has become the material of choice and convenience. Almost all facets of wire and cable manufacture have benefited by the use of ceramics in the production processes.

2. Product quality and output have been maximized with minimum downtime; Lower wear
Problems and surface defects.

3. Pulley flanges, CNC Machined and available in fully anodized Aluminum, coated with anti corrosion layers, are not affected by most wire drawing solutions and do not need frequent maintenance vis-à -vis Phenolic materials. The flanges are held together by means of SS screws. High performance bearings are used and are pressed fitted into the metal flanges. The metal part is duly anodized to prevent rusting.

Product Feature:

1. Flanged ceramic roller, Wire guide pulleys (ceramic pulleys) is commonly used component when wire passing is required, it can be used in coil winding machine, cable machine and the textile machinery as well. The porcelain ring is mounted on the bearing, Coil winding wire guide pulley(wire roller) will rotate by the thread and wire passing on the surface of the ring. Thus the sliding friction has been converted to the static friction.

2. But at the start and stop, in order to overcome the inertia, there will be a partial sliding friction. The surface Polish degree of the porcelain ring reaches Ra0.2; The beating during rotation is under 0.15. We select the 99% AL2O3 as the material with the hardness of HRA88 and the density of 3.85…Two nylon side walls have been put to the both side of the ceramic ring and the bearing, coil winding wire guide pulley (wire roller) combines 1 wire roller.

Service:

1. With many available designs and configurations, such as bolt together, CHINAMFG ceramic, or coated aluminum. CHINAMFG can satisfy the unique requirements of the wire and cable industry.

2. HARTAI’s AL95 guide pulleys are long lasting, will help improve wire surface quality and at the same time reduce maintenance and production costs.

3. CHINAMFG offers dozens standard sizes of guide pulleys. A large inventory of pulleys is maintained for the most widely used sizes for immediate delivery. Xihu (West Lake) Dis. pulleys can also be manufactured to specific requirements and detail.

Features :

1.The middle ceramic coil is made of precise ceramic and matched with high-speed bearing 2. The winding tension can be maintained in a stable manner through the pulleys .

3.Baffles in both sides can prevent the wire to jump out of the groove .

4.The groove is polished to Ra0.2 .

Advantages :

1.Easy to be installed
2.Low coefficient of frictio
3. High speed running bearing
4.High quality and competitive prices

Specifications of ceramic wire guide small pulley

Modle No. A(mm) B(mm) C(mm) D(mm)
HT001 7.8 6 2 3.2
HT002 8 8 2 4
HT003 10.6 7.3 2 3.5
HT004 12 10 4 4
HT005 14 10 3 6
HT005-C04 21.5 14 4 10
HT005-C05 21.5 14 5 10
HT006-C05 30 24 5 11
HT006-C06 30 24 6 11
HT006-C07 30 24 7 11
HT006-C08 30 24 8 11
HT007-C05 35 24 5 11
HT007-C06 35 24 6 11
HT007-C07 35 24 7 11
HT007-C08 35 24 8 11
HT008-C05 40 24 5 12
HT008-C06 40 24 6 12
HT008-C07 40 24 7 12
HT008-C08 40 24 8 12
HT009-C09 45 36 9 13.5
HT009-C10 45 36 10 13.5

Display of the ceramic wire guide small pulley

 

Information of our company

HARTAI Technology Industry Co., Ltd , found in 2001, is located in the beautiful city of China’s manufacturing industry HangZhou City.  It is committed to nozzle, ruby products, tungsten carbide products, ceramic products, plastic crochet hook and precision machinery manufacturing .Our main products are nozzle, ceramic roller, jump wire preventer, various sizes of ceramic eyes, combination  wire roller, ceramic wheel and non-standard parts, all kinds of tension and so on. 

FAQ

1. How can I get a quotation?
 
You can find our contact information below this page and some detail information will be very helpful to get an exact quotation. We will give quotation within 24hours, if urgent, please tell us and we will regard your inquiry priority.
 
2. How can I get a sample?
 
As the price confirmed, you can require for samples. 
 
3. Can you do the design for us?
 
 Yes, we have our factory and we can make OEM order.
 
 
4. How long can I expect to get the sample?
 
Normally it takes 7-15days to produce the sample.
 
 
5. What about the lead time for mass production?
 
It depends on what kind of products you ordered. Generally, 15-25days for mass order.
 
We sincerely hope to get your inquiry of this voice coil actuator! If any questions, please feel free to contact us. Thanks for visiting our website!O(∩_∩)O

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Certification: CE, ISO, Ce, ISO9001: 2000
Pulley Sizes: Various Size
Manufacturing Process: Polishing
Material: Steel&Ceramic
Surface Treatment: Polishing
Application: Automatic Winding Machine
Samples:
US$ 6.5/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

guide roller

How does the choice of materials impact the performance of guide rollers in different environments?

The choice of materials for guide rollers significantly impacts their performance in different environments. Here’s a detailed explanation of how material selection affects the performance of guide rollers:

  • Wear Resistance:

Guide rollers are subjected to continuous contact and friction with the conveyed materials or objects. The choice of materials with high wear resistance is crucial to ensure the longevity and performance of guide rollers. Materials such as steel, stainless steel, or polyurethane are commonly used for guide rollers due to their excellent wear resistance properties. These materials can withstand the abrasion and wear caused by repetitive contact with the conveyed materials, resulting in extended service life and reliable performance in demanding environments.

  • Corrosion Resistance:

In environments where guide rollers are exposed to moisture, chemicals, or corrosive substances, selecting materials with high corrosion resistance is essential. Stainless steel is a popular choice for guide rollers in corrosive environments due to its resistance to rust and corrosion. Stainless steel guide rollers can withstand the effects of water, chemicals, and harsh substances, ensuring long-term performance and preventing premature failure or degradation due to corrosion.

  • Temperature Resistance:

In environments with extreme temperatures, the choice of materials with appropriate temperature resistance is critical to ensure the performance and durability of guide rollers. For high-temperature applications, materials such as heat-resistant steel alloys or specialized polymers that can withstand elevated temperatures are used. Conversely, in low-temperature environments, materials that remain flexible and maintain their mechanical properties at low temperatures, such as certain types of plastics or elastomers, are preferred. Selecting materials with suitable temperature resistance ensures that guide rollers can operate effectively and reliably in extreme temperature conditions.

  • Load-Bearing Capacity:

The choice of materials for guide rollers affects their load-bearing capacity, which is crucial for supporting the weight of the conveyed materials or objects. Materials with high strength and stiffness, such as steel or reinforced polymers, are commonly used to ensure sufficient load-bearing capacity. The material’s ability to withstand high loads without deformation or failure is essential for maintaining the stability and performance of guide rollers, particularly in heavy-duty applications or environments with significant material or object weights.

  • Noise and Vibration:

The choice of materials can influence the level of noise and vibration generated by guide rollers during operation. Softer materials with vibration-dampening properties, such as certain types of plastics or elastomers, can help reduce noise and vibration levels. These materials absorb and dissipate vibrations, resulting in quieter operation and reduced potential for noise-related issues or worker discomfort. Choosing materials that minimize noise and vibration is particularly important in environments where noise control is a priority, such as in indoor facilities or noise-sensitive areas.

  • Contamination and Cleanliness:

In environments where cleanliness and contamination control are critical, the choice of materials for guide rollers can play a significant role. Some materials, such as stainless steel or certain types of plastics, have smooth and non-porous surfaces that are resistant to contamination buildup. These materials are easier to clean and maintain, reducing the risk of particle generation or contamination transfer to the conveyed materials. Selecting materials that meet cleanliness requirements is essential in industries such as food processing, pharmaceuticals, or electronics manufacturing.

In summary, the choice of materials for guide rollers has a substantial impact on their performance in different environments. Factors such as wear resistance, corrosion resistance, temperature resistance, load-bearing capacity, noise and vibration levels, and contamination control should be considered when selecting materials for guide rollers. By choosing the appropriate materials for specific environmental conditions, guide rollers can deliver optimal performance, longevity, and reliability in a wide range of applications and industries.

guide roller

What safety considerations should be taken into account when using guide rollers in industrial settings?

When using guide rollers in industrial settings, several safety considerations should be taken into account to ensure the well-being of personnel and the safe operation of equipment. Here are some important safety considerations:

  • Guarding and Enclosure:

Guide rollers should be properly guarded and enclosed to prevent accidental contact with moving parts. Guards and enclosures should be designed and installed in accordance with applicable safety standards and regulations. They should effectively restrict access to the guide rollers, minimizing the risk of entanglement, pinching, or crushing hazards. Adequate guarding and enclosure ensure that only authorized personnel can access the guide rollers for maintenance or inspection purposes, reducing the potential for accidents or injuries.

  • Lockout/Tagout Procedures:

Lockout/tagout procedures should be implemented when performing maintenance or servicing tasks on guide rollers. Lockout/tagout procedures involve isolating and de-energizing the conveyor system, ensuring that it cannot be accidentally started or operated during maintenance activities. This prevents unexpected movement of the guide rollers, reducing the risk of personnel getting caught or injured. Lockout/tagout procedures should be strictly followed, and personnel should be trained on their proper implementation to maintain a safe working environment.

  • Proper Training and Education:

All personnel involved in the operation, maintenance, or servicing of guide rollers should receive proper training and education on safety procedures and best practices. They should be familiar with the potential hazards associated with guide rollers and understand how to safely operate, inspect, and maintain them. Training should cover topics such as lockout/tagout procedures, emergency response protocols, hazard identification, and safe work practices. Regular refresher training sessions should be conducted to reinforce safety awareness and ensure that personnel stay updated with the latest safety guidelines.

  • Maintenance and Inspection:

Regular maintenance and inspection of guide rollers are essential for identifying and addressing potential safety issues. Adequate lubrication, cleaning, and adjustment of guide rollers should be performed according to manufacturer recommendations. Regular inspections should be conducted to check for signs of wear, damage, or misalignment. Any identified issues should be promptly addressed to prevent accidents or equipment failures. A systematic maintenance and inspection program helps ensure that guide rollers are in proper working condition, minimizing the risk of safety incidents.

  • Proper Lifting and Handling:

When lifting or handling guide rollers, proper lifting techniques and equipment should be used to prevent strains, sprains, or other musculoskeletal injuries. Guide rollers can be heavy and awkward to handle, so personnel should receive training on safe lifting practices. Appropriate lifting aids, such as hoists or cranes, should be used when necessary. Additionally, personnel should wear appropriate personal protective equipment (PPE), such as gloves or safety glasses, to protect against potential hazards during lifting and handling operations.

  • Emergency Stop Systems:

Guide rollers should be equipped with emergency stop systems that allow for immediate shutdown of the conveyor system in case of an emergency or hazardous situation. Emergency stop buttons or pull cords should be strategically located and easily accessible along the conveyor line. Personnel should be trained on how to use these emergency stop systems effectively. Regular testing and maintenance of the emergency stop systems should be conducted to ensure their reliable operation during critical situations.

In summary, when using guide rollers in industrial settings, several safety considerations should be taken into account. These include proper guarding and enclosure, implementation of lockout/tagout procedures, providing adequate training and education to personnel, performing regular maintenance and inspections, following proper lifting and handling practices, and ensuring the availability and functionality of emergency stop systems. By prioritizing safety and adhering to these considerations, the risks associated with guide rollers can be minimized, promoting a safe working environment and reducing the likelihood of accidents or injuries.

guide roller

What is a guide roller, and how is it used in various industrial applications?

A guide roller is a mechanical component used in various industrial applications to guide and support the movement of objects along a predetermined path. Here’s a detailed explanation of what a guide roller is and how it is used in different industrial applications:

  • Definition and Construction:

A guide roller, also known as a tracking roller or conveyor roller, is a cylindrical or barrel-shaped component typically made of metal or durable plastic. It is designed with a central axle and bearings that allow it to rotate freely. The outer surface of the guide roller is usually smooth or equipped with grooves or flanges to ensure proper alignment and guidance of the moving object.

  • Industrial Applications:

Guide rollers find application in a wide range of industrial sectors, including manufacturing, material handling, transportation, and logistics. Some common industrial applications include:

  • Conveyor Systems:

Guide rollers are extensively used in conveyor systems to support and guide the movement of conveyor belts or other types of conveyance surfaces. They help maintain proper alignment and prevent the belt from wandering or slipping off the designated path. Guide rollers are strategically positioned along the conveyor to ensure smooth and efficient material handling, reducing the risk of jams, spills, or product damage.

  • Packaging Machinery:

In packaging machinery, guide rollers assist in the precise movement and positioning of packaging materials, such as boxes, cartons, or bags. They ensure smooth transitions and accurate alignment during processes such as filling, sealing, labeling, and palletizing. Guide rollers play a crucial role in maintaining the overall efficiency and reliability of packaging operations.

  • Printing and Paper Handling:

Guide rollers are used in printing and paper handling equipment to guide paper or other printable media through the printing or processing stages. They help prevent paper misalignment, wrinkling, or skewing, ensuring accurate registration and consistent print quality. Guide rollers are also employed in paper cutting, folding, and binding machines to ensure precise paper movement and reliable operation.

  • Textile Machinery:

In textile manufacturing, guide rollers are utilized in various machinery, such as spinning frames, weaving looms, and fabric finishing equipment. They guide yarns, threads, or fabrics through different stages of production, ensuring proper tension and alignment. Guide rollers contribute to the overall quality and efficiency of textile processes, minimizing defects and improving productivity.

  • Material Handling Equipment:

Guide rollers are integral components in material handling equipment, such as lift trucks, pallet jacks, and automated guided vehicles (AGVs). They facilitate the smooth movement of loads and assist in accurate positioning and maneuvering. Guide rollers are often used in conjunction with tracks or rails to ensure stable and controlled movement in various industrial environments.

In conclusion, a guide roller is a mechanical component used to guide and support the movement of objects along a predetermined path in various industrial applications. They play a critical role in maintaining proper alignment, preventing misalignment or slippage, and ensuring smooth and efficient operation. Whether it’s in conveyor systems, packaging machinery, printing equipment, textile machinery, or material handling applications, guide rollers contribute to the overall performance, reliability, and productivity of industrial processes.

China manufacturer High Performance Eco Friendly Factory Textile Coil Winding Machine Ceramic Wire Guide Roller  China manufacturer High Performance Eco Friendly Factory Textile Coil Winding Machine Ceramic Wire Guide Roller
editor by Dream 2024-05-15

China supplier Triple Corner Fiberoptic Cable Pulley Cable Guide Roller

Product Description

Electric Straight Line Bridge Pulley Steel Pipe Cable Roller

Power and communication cables are often laid in open trenches where the road and ground conditions result in the cable route having a number of curves. With the cable’s own weight and the high tensions involved the cable cannot be fed cleanly.
The ground cable rollers and corner cable rollers from SINTA are made of aluminium, steel or plastic. The sturdy and robust steel frames are completely galvanized and guarantee a long working life even underextreme conditions.

 underground conduit cable rollers types
 § Ground Cable Roller, aluminium
Abrasion resistant aluminium rollers, galvanized steel tube frame
dust- and soil proof ball bearings, large ground clearance
§  Ground Cable Roller, steel
Abrasion resistant steel rollers, galvanized steel tube frame
dust- and soil proof ball bearings, large ground clearance
§ Ground Cable Roller, synthetic
Non-aging and weatherproof, extreme light weight, highly shock-resistant 
stackable, large ground clearance, for cables up to Ø 100 mm
 
 underground conduit cable rollers specification

Serial No. Length (mm) Width (mm) Height (mm) wheel outer dia
(mm)
wheel bottom dia
(mm)
wheel width(mm) weigth
(kg)
Rated Burden 
(KN)
Applied cable dia
(mm)
ST- 8603 300 230 260 140 60 165 4.8 12 ≤150mm

A heat stabilized formulation is available for applications with a maximum continuous operating temperature of 260ºF.
 
Ultimate compressive strength is 15,000 CHINAMFG
Bearing compressive strength is 4,000 CHINAMFG
Used as the industry standard for plastic sheaves or pulleys

Other cable pulleys:

FAQ
Q: Are you trading company or manufacturer ?
A: We are manufacturer with our own factory.
Q: How long is your delivery time?
A: Generally it is 5-10 days if the goods are in stock. Or it is 15-20 days if the goods are not in stock, it is according to quantity.
Q: Do you provide samples ? is it free or extra ?
A: Yes, we could offer the sample for free charge. And the freight cost will on the buyer’s side.
Q: What is your terms of payment ?
A: Payment=USD1000, 30% T/T in advance ,balance before shipment.

Try order is acceptable. Sample is available.
Welcome to inquire, we will feedback within  24 hours

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Type: Cable Pulling Tools
Certification: ISO
Customized: Customized
Condition: New
Feature: Insulation
Name: Underground Conduit Cable Rollers
Customization:
Available

|

guide roller

How does the choice of materials impact the performance of guide rollers in different environments?

The choice of materials for guide rollers significantly impacts their performance in different environments. Here’s a detailed explanation of how material selection affects the performance of guide rollers:

  • Wear Resistance:

Guide rollers are subjected to continuous contact and friction with the conveyed materials or objects. The choice of materials with high wear resistance is crucial to ensure the longevity and performance of guide rollers. Materials such as steel, stainless steel, or polyurethane are commonly used for guide rollers due to their excellent wear resistance properties. These materials can withstand the abrasion and wear caused by repetitive contact with the conveyed materials, resulting in extended service life and reliable performance in demanding environments.

  • Corrosion Resistance:

In environments where guide rollers are exposed to moisture, chemicals, or corrosive substances, selecting materials with high corrosion resistance is essential. Stainless steel is a popular choice for guide rollers in corrosive environments due to its resistance to rust and corrosion. Stainless steel guide rollers can withstand the effects of water, chemicals, and harsh substances, ensuring long-term performance and preventing premature failure or degradation due to corrosion.

  • Temperature Resistance:

In environments with extreme temperatures, the choice of materials with appropriate temperature resistance is critical to ensure the performance and durability of guide rollers. For high-temperature applications, materials such as heat-resistant steel alloys or specialized polymers that can withstand elevated temperatures are used. Conversely, in low-temperature environments, materials that remain flexible and maintain their mechanical properties at low temperatures, such as certain types of plastics or elastomers, are preferred. Selecting materials with suitable temperature resistance ensures that guide rollers can operate effectively and reliably in extreme temperature conditions.

  • Load-Bearing Capacity:

The choice of materials for guide rollers affects their load-bearing capacity, which is crucial for supporting the weight of the conveyed materials or objects. Materials with high strength and stiffness, such as steel or reinforced polymers, are commonly used to ensure sufficient load-bearing capacity. The material’s ability to withstand high loads without deformation or failure is essential for maintaining the stability and performance of guide rollers, particularly in heavy-duty applications or environments with significant material or object weights.

  • Noise and Vibration:

The choice of materials can influence the level of noise and vibration generated by guide rollers during operation. Softer materials with vibration-dampening properties, such as certain types of plastics or elastomers, can help reduce noise and vibration levels. These materials absorb and dissipate vibrations, resulting in quieter operation and reduced potential for noise-related issues or worker discomfort. Choosing materials that minimize noise and vibration is particularly important in environments where noise control is a priority, such as in indoor facilities or noise-sensitive areas.

  • Contamination and Cleanliness:

In environments where cleanliness and contamination control are critical, the choice of materials for guide rollers can play a significant role. Some materials, such as stainless steel or certain types of plastics, have smooth and non-porous surfaces that are resistant to contamination buildup. These materials are easier to clean and maintain, reducing the risk of particle generation or contamination transfer to the conveyed materials. Selecting materials that meet cleanliness requirements is essential in industries such as food processing, pharmaceuticals, or electronics manufacturing.

In summary, the choice of materials for guide rollers has a substantial impact on their performance in different environments. Factors such as wear resistance, corrosion resistance, temperature resistance, load-bearing capacity, noise and vibration levels, and contamination control should be considered when selecting materials for guide rollers. By choosing the appropriate materials for specific environmental conditions, guide rollers can deliver optimal performance, longevity, and reliability in a wide range of applications and industries.

guide roller

Can you provide insights into the importance of proper installation and alignment of guide rollers?

Proper installation and alignment of guide rollers are crucial for ensuring optimal performance, longevity, and safety in material handling systems. Here are some insights into their importance:

  • Accurate Material Guidance:

Proper installation and alignment of guide rollers ensure accurate material guidance along the desired path. When guide rollers are correctly installed and aligned, they create a well-defined trajectory for the materials to follow, preventing material deviation, misalignment, or collisions. Accurate material guidance is essential for maintaining process efficiency, preventing disruptions, and avoiding damage to both the materials being handled and the equipment itself.

  • Reduced Wear and Damage:

Correctly installed and aligned guide rollers minimize wear and damage to both the guide rollers and the materials being conveyed. Misalignment or improper installation can result in excessive friction, uneven loading, or unnecessary stress on the guide rollers. This can lead to premature wear, deformation, or failure of the rollers, as well as damage or degradation of the conveyed materials. Proper alignment ensures even distribution of forces and reduces the risk of wear, extending the service life of the guide rollers and preserving the integrity of the materials.

  • Optimized Energy Efficiency:

Properly installed and aligned guide rollers contribute to optimized energy efficiency in material handling systems. Misalignment or improper installation can create additional friction, requiring more power to move the materials along the desired path. This results in increased energy consumption and higher operational costs. On the other hand, accurate alignment reduces friction, minimizes energy losses, and improves overall energy efficiency. By ensuring proper installation and alignment, material handling systems can operate more efficiently and cost-effectively.

  • Prevention of Material Jams and Blockages:

Guide rollers that are installed and aligned correctly help prevent material jams and blockages within the system. Misalignment or improper installation can cause materials to deviate from the intended path, leading to obstructions or accumulation in critical areas. These blockages can disrupt the material flow, impair system performance, and potentially damage the equipment. Proper alignment and installation of guide rollers ensure smooth and unobstructed material movement, minimizing the risk of jams and blockages and maintaining uninterrupted operation.

  • Enhanced System Stability and Safety:

Proper installation and alignment of guide rollers contribute to system stability and safety. Misaligned or improperly installed guide rollers can introduce instability, vibrations, or wobbling during material handling operations. This instability not only affects the accuracy and efficiency of material movement but also poses safety risks for personnel and equipment. Accurate alignment ensures stable and controlled material conveyance, reducing the likelihood of accidents, collisions, or equipment damage. It promotes a safer working environment and protects the integrity of the material handling system.

In summary, proper installation and alignment of guide rollers are vital for accurate material guidance, reducing wear and damage, optimizing energy efficiency, preventing material jams, enhancing system stability, and ensuring safety in material handling operations. By paying close attention to the installation and alignment processes, operators can maximize the performance, reliability, and lifespan of guide rollers while minimizing the risk of disruptions and costly repairs.

guide roller

How does the design of a guide roller contribute to efficient material handling and movement?

The design of a guide roller plays a crucial role in facilitating efficient material handling and movement within industrial applications. Here’s a detailed explanation of how the design of a guide roller contributes to efficiency:

  • Surface Configuration:

The surface configuration of a guide roller is carefully designed to optimize material handling and movement. Depending on the specific application, guide rollers may have a smooth surface, grooves, or flanges. A smooth surface reduces friction and allows objects to glide smoothly along the roller. Grooves or flanges provide additional guidance and prevent objects from deviating or slipping off the roller. The surface configuration ensures proper alignment and prevents misalignment, leading to efficient material handling and movement.

  • Material Selection:

The choice of materials for guide rollers is critical in ensuring efficient material handling. Guide rollers are commonly made from durable materials such as metal or high-quality plastics. These materials offer excellent strength, wear resistance, and dimensional stability. The selected materials should also have low friction properties to minimize energy loss and reduce the potential for material damage or wear. By selecting appropriate materials, the design of guide rollers contributes to efficient and reliable material handling and movement.

  • Bearing System:

The design of guide rollers incorporates a bearing system that allows smooth rotation and minimizes friction. The bearings used in guide rollers are typically sealed or shielded to protect against contaminants and ensure long-lasting performance. The bearing system enables the guide roller to rotate freely, reducing resistance and facilitating efficient material movement. It also contributes to the longevity of the guide roller by reducing wear and minimizing the need for frequent maintenance.

  • Size and Diameter:

The size and diameter of a guide roller are carefully determined based on the specific application and load requirements. Guide rollers come in various sizes and diameters to accommodate different material handling needs. Larger guide rollers can handle heavier loads with greater stability, while smaller guide rollers are suitable for lighter objects or confined spaces. The appropriate sizing and diameter of the guide roller ensure optimal support, load distribution, and efficient movement of materials.

  • Installation and Positioning:

The design of guide rollers takes into account proper installation and positioning within the machinery or system. Guide rollers are strategically placed along the intended path to provide continuous guidance and support. The spacing between guide rollers is determined to prevent material deviation or excessive sagging. Proper installation and positioning of guide rollers ensure smooth and consistent material handling, minimizing the risk of jams, misalignment, or disruptions in the movement process.

In summary, the design of a guide roller significantly contributes to efficient material handling and movement. The surface configuration, material selection, bearing system, size and diameter, as well as the proper installation and positioning of guide rollers, all play a vital role. By providing precise guidance, minimizing friction, supporting loads, and ensuring proper alignment, the design of guide rollers optimizes material handling processes, enhances productivity, and promotes efficient movement within industrial applications.

China supplier Triple Corner Fiberoptic Cable Pulley Cable Guide Roller  China supplier Triple Corner Fiberoptic Cable Pulley Cable Guide Roller
editor by Dream 2024-05-15